Linear feasibility problem

\[
\begin{align*}
\min & \quad c^T x \quad \text{s.t.} \\
Ax + b & \geq 0
\end{align*}
\]

\[
\begin{align*}
\max & \quad -b^T y \quad \text{s.t.} \\
A^T y & = c, \quad y \geq 0
\end{align*}
\]

find \quad x \quad \text{s.t.} \\
Ax + b & \geq 0
Separation oracle
Ellipsoid preview
Difficulties

• How do we get bounding sphere?

• How do we know when to stop?

• Bound region gets complicated—how do we find its center?
Bounding a half-ellipsoid

• General ellipsoid w/ center x_c, shape A:

• Halfspace: $p^T x \leq p^T x_c$

• Translate to origin, scale to be spherical

 $y = x = $
Bounding a half-sphere

• Rotate so hyperplane is axis-normal

• New center \(z_C \):
• New shape \(B \):
For example
Ellipsoid algorithm

• Want to find x s.t. $Ax + b + \eta \geq 0$
• Pick E_0 s.t. $x^* \in E_0$
• for $t := 1, 2, \ldots$
 – $x_t :=$ center of E_t
 – ask whether $Ax_t + b + \eta \geq 0$
 • yes: declare feasible!
 • no: get new constraint w/ normal p_t
 – $E_{t+1} :=$ bound($E_t \cap \{ x \mid p_t^T x \leq p_t^T x_t \}$)
 – if $\text{vol}(E_{t+1}) \leq \varepsilon \text{vol}(E_0)$: declare infeasible!
Getting bounds

• How big does E_0 need to be?
• What should η be?
• How small does ϵ need to be?
Dotting i’s, crossing t’s

• What if LF was unbounded?

• What about numerical precision?
Comparison to constraint generation

• Ellipsoid is polynomial, but slow
• Constraint generation has no non-trivial runtime bound, but often much faster
Other algorithms

• Interior point: polynomial, can be very fast
• Simplex: exponential in worst case, but often fast in practice
• Randomized simplex: polynomial [Kelner & Spielman, 2006]
• Subgradient descent: weakly polynomial, but really simple, and fast for some purposes
What’s a subgradient?
Subgradients for SVMs

- \(\min_{s,w,b} \|w\|^2 + C \sum_i s_i \) s.t.
 \[y_i(x_i^Tw - b) \geq 1 - s_i \]
 \[s_i \geq 0 \]
- Equivalently,
Subgradients for SVMs

• \(\min_w L(w) = \|w\|^2 + (C/m) \sum_i h(y_i x_i^T w) \)

• Subgradient of \(h(z) \):

• Subgradient of \(L(w) \) wrt \(w \):
SVM loss
Subgradient descent
Subgradient descent

• While not tired:

 \[g_t = \partial f(x_t) \]

 \[x_{t+1} = x_t - \eta_t g_t \]
Subgradient questions

• How to choose learning rate?

• How to decide when we’re tired?

• How to estimate $\partial f(x_t)$?