Solving convex programs

• Linear programs:

General CP:

 Interesting special cases: QP, SOCP, SDP

Separation oracle: QPs

• min q(x) st Ax = b, $x \ge 0$

Separation oracle: SOCPs

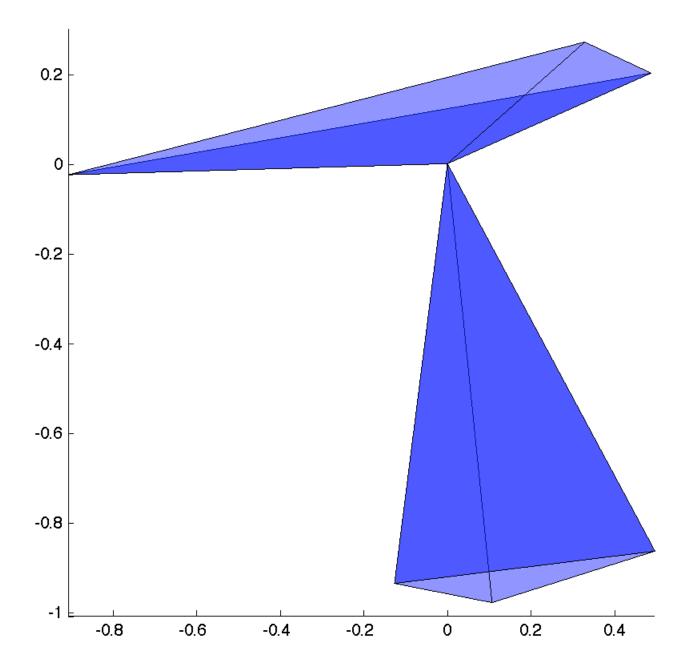
- SOC constraint: ||Ax + b|| ≤ c'x + d
- Given x₀ that fails:

Separation oracle: SDPs

SDP constraint:

$$A = x_1 A_1 + x_2 A_2 + ...$$

 $A \in S_+$


Convex duality

- Several new types of duality
 - convex cones
 - convex sets
 - convex functions
 - convex programs
- Generalize LP/QP duality
- Generalize norm duality (e.g., L₁ v. L∞)

Cone duality

Cone K (not necessarily convex)

• K* =

Examples of dual cones

- Halfspace a^Tx ≥ 0
- Subspace { x | Ax = 0 }
- R₊ⁿ
- SOC: $\{(x, s) | ||x||_2 \le s \}$

• norm cone: $\{(x, s) | ||x|| \le s \}$

S₊ is self-dual

• S_{+} : { A | A=A^T, $x^{T}Ax \ge 0$ for all x }

Ex: Euclidean distance matrices

- Given points x_i
- Matrix D: D_{ij} =

Properties of dual cones

K* is closed and convex

• K** = cl conv K

If K closed and convex,

Properties of dual cones

- K₁ K₂ K₂* K₁*
- K₁ K₂ K₂* K₁*
- If K₁, K₂ are closed and convex:

Intersection and union

•
$$(K_1 \cup K_2)^* =$$

•
$$(K_3 \cap K_4)^* =$$

Flat, pointed, solid, proper

- K is flat if:
- E.g., K =
- K is pointed if:
- E.g., K =
- K is proper if:
- E.g., K =

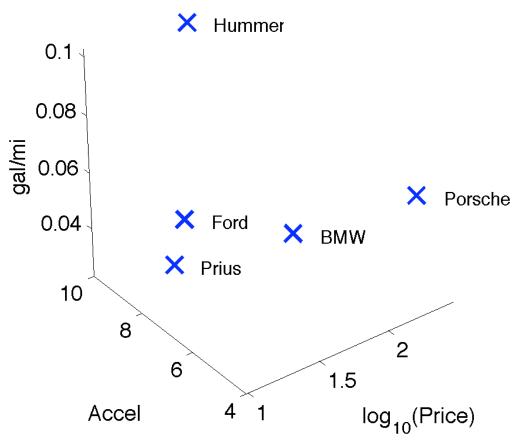
Generalized inequalities

- Given proper cone K
- $x \ge_K y$ iff $x y \ge_K 0$ iff

- x >_K y iff x ≥_K y and x != y
- x ≤_K y and x <_K y: as expected
- Transitive:
- Examples:

Application: multi-criterion optimization

Ordinary feasible region


Indecisive optimizer: wants all of

Buying the perfect car

\$K 0-60 MPG

Pareto optimality

x* Pareto optimal =

Pareto examples

Scalarization

• To find Pareto optima of convex problem:

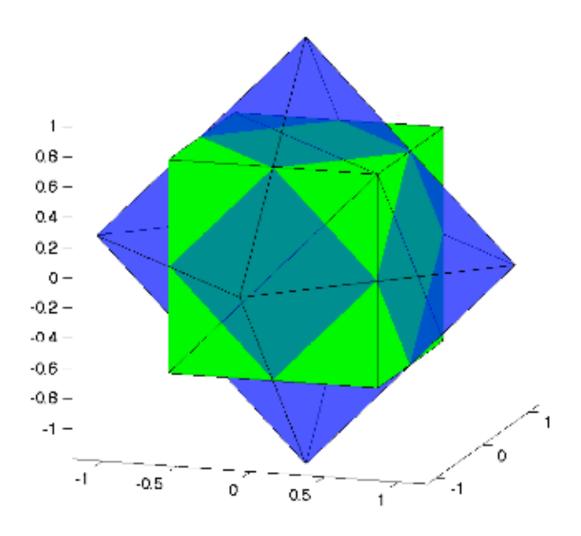
Dual sets

- Any convex set C
 - e.g.,
- can be represented as intersection of
 - a convex cone:
 - and the hyperplane:
- Dual set: C* =

For example

Dual of unit sphere

Equivalent definition


$$C^* = \{ y \mid$$

More examples

• $\{x \mid x^T A x \le 1\}$ A invertible

• Unit square $\{(x, y) \mid -1 \le x, y \le 1\}$

Cuboctahedron

Dual-norm balls

Dual norm definition||y||_{*} = max

•
$$\{ x \mid ||x|| \le 1 \}^* =$$