Solving convex programs

· Linear programs: Simplex, subgradient, ellipsoid, interior point

· General CP: "simplex," subgradient, ellipsord, interior point

 Interesting special cases: QP, SOCP, SDP Separation oracle: QPs

• $\min_{x} q(x) \text{ st } Ax = b, x \ge 0$

min
$$z \leq st$$
. $Ax = b \times \geq 0 \quad z \geq q(x)$

$$x_{0}$$
, z_{0} s.t. z_{0} < $q(x_{0})$
 z_{0} < $q(x_{0})$ + $(x-x_{0}) \cdot q'(x_{0})$
 z_{0} < $q(x_{0})$ + $(x-x_{0}) \cdot q'(x_{0})$
 z_{0}
 z_{0}

q (x0) + (x-x0) . q'(x)

Separation oracle: SOCPs

- SOC constraint: $||Ax + b|| \le c'x + d$
- Given x₀ that fails:

$$\frac{U = A \times_{0} + 6}{\|A \times_{0} + 6\|} \quad \text{or} \quad u = e, \quad \text{if} \quad \frac{A \times_{0} + 6 = 0}{\|A \times_{0} + 6\|}$$

$$\text{new constr:} \quad u^{T} (A \times + 6) \ \langle e^{7} \times + d \rangle \quad \text{or} \quad |A \times_{0} + 6| \leq (7 \times_{0} + d)$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad (A \times_{0} + 6) \quad \text{or} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

$$= \frac{(A \times_{0} + 6)^{T}}{\|A \times_{0} + 6\|} \quad |A \times_{0} + 6\|$$

Separation oracle: SDPs

• SDP constraint: $A_i \in \mathbb{R}^n$ $A_i = A_i^T$ $A = X_1 A_1 + X_2 A_2 + \dots$ $A \in S_+$ $\text{given } x_0, A_0 \quad \text{and} \quad \text{a$

Convex duality

- Several new types of duality
 - convex cones
 - convex sets
 - convex functions
 - convex programs
- Generalize LP/QP duality
- Generalize norm duality (e.g., L₁ v. L∞)

Cone duality

Cone K (not necessarily convex)

Examples of dual cones

- Halfspace $a^Tx \ge 0$ $\{ \lambda \land | \lambda \ge 0 \}$
- Subspace $\{x \mid Ax = 0\}$ $\{A^Ty \mid y \in \mathbb{R}^d\}$

•
$$(R_{+}^{n})^{*} \cdot R_{+}^{n}$$
 $x \ge 0, y \ge 0 \implies x^{T}y \ge 0$
• $SOC: \{(x, s) | ||x||_{2} \le s\}$

$$\binom{x}{s} \cdot \binom{y}{t} = x \cdot y + st = -\|x\| \|y\| + st \ge 0 \in (\|x\| \|y\| \le st)$$
if $x = y$, $s = t = \|x\| \implies -s \cdot s + s \cdot s = 0$
 $= soc.$

 norm cone: { (x, s) | ||x|| ≤ s } Mud norm

||y||x = max X.y

{x | ||x||s|}

Aefinition - c.s.

||x|| = max |xi|

S₊ is self-dual

S₊: { A | A=A^T, x^TAx ≥ 0 for all x }

$$S_{+}^{*} \subseteq S_{+}$$
 Suppose $Y \not\ni 0 \Rightarrow u^{T} \not\mid u < 0$

$$\Rightarrow tr(u^{T} \not\mid u) < 0 \Rightarrow tr(u^{T} \not\mid v) < 0$$

$$\Rightarrow Y \not\notin S_{+}^{*}$$

$$S_{+}^{*} \supseteq S_{+}$$
 pros. qiwan $\times \geqslant 0$ show $tr(x^{T} \not\mid v) \geqslant 0$

$$x = \sum_{i} x_{i} y_{i} y_{i}^{T} x_{i} \geqslant 0$$

$$tr(Y^{T} x) = \sum_{i} x_{i} tr(Y^{T} y_{i} y_{i}^{T}) = \sum_{i} x_{i} tr(y_{i}^{T} Y^{T} y_{i}^{T}) \geqslant 0$$

Ex: Euclidean distance matrices

k= {DI) } • Matrix D: $D_{ij} = (x_i - x_j)^{1/2}$ - K* = {P+Q | P=0 P=PT & P; =0 Q diagonal } show tr (DT (uut + Q)) > 0 show tr (DT (uut + Q)) > 0 tr(DTQ) = 0 since Di = 0 Vi $+r(D^Tuu^T) = +r(u^TDu) = \sum_{ij} w_i u_j (x_i^Tx_i - 2x_i^Tx_j + x_j^Tx_j)$ = 2 \(\mathbb{L}_{ij} \mathbb{u}_{i} \mathbb{u}_{i}^{\dagger} \mathbb{x}_{i} - 2 \(\mathbb{L}_{ij} \mathbb{u}_{i} \mathbb{u}_{j} \mathbb{x}_{i}^{\dagger} \mathbb{x}_{j} \) = 2 \(\frac{1}{2} \mathbb{n}_1 \times \frac{1}{2} \mathbb{n}_

Properties of dual cones

K* is closed and convex

• K** = cl conv K

If K closed and convex,

Properties of dual cones

•
$$K_1 \subseteq K_2 \Rightarrow K_2^* \subseteq K_1^*$$

•
$$K_1 \ge K_2$$
 $K_2^* \ge K_1^*$

If K₁, K₂ are closed and convex:

$$K_1 \subseteq K_2 \iff K_1^* \supseteq K_2$$
 $K_1 \subseteq K_2 \iff K_1^* \supseteq K_2^*$