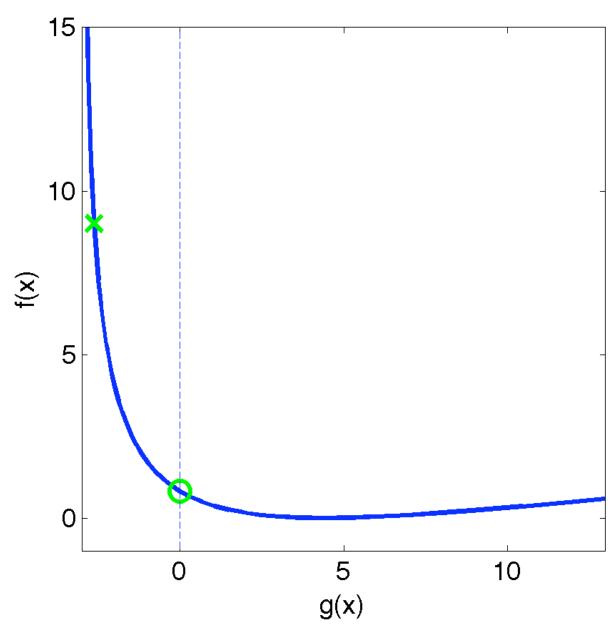
Slater's condition: proof

- $p^* = \inf_x f(x)$ s.t. Ax = b, $g(x) \le 0$ e.g., $\inf x^2$ s.t. $e^{x+2} - 3 \le 0$
- A =

e.g., A =

Picture of set A

$$L(y,z) =$$



Nonconvex example

Interpretations

$$L(x, y, z) = f(x) + y^{T}(Ax-b) + z^{T}g(x)$$

Prices or sensitivity analysis

Certificate of optimality

Optimality conditions

- $L(x, y, z) = f(x) + y^{T}(Ax-b) + z^{T}g(x)$
- Suppose strong duality, (x, y, z) optimal

Optimality conditions

- $L(x, y, z) = f(x) + y^{T}(Ax-b) + z^{T}g(x)$
- Suppose (x, y, z) satisfy KKT:

$$Ax = b g(x) \le 0$$

$$z \ge 0 z^{T}g(x) = 0$$

$$0 \in \partial f(x) + A^{T}y + \sum_{i} z_{i} \partial g_{i}(x)$$

Using KKT

- Can often use KKT to go from primal to dual optimum (or vice versa)
- E.g., in SVM:

$$\alpha_i > 0 \le y_i(x_i^T w + b) = 1$$

- Means $b = y_i x_i^T w$ for any such i
 - typically, average a few in case of roundoff

Set duality

- Let C be a set with 0 ∈ conv(C)
- $C^* = \{ y \mid x^T y \le 1 \text{ for all } x \in C \}$
- Let $K = \{ (x, s) | x \in sC \}$
- $K^* = \{ (y, t) \mid x^T y + st \ge 0 \text{ for all } X \in K \}$

What is set duality good for?

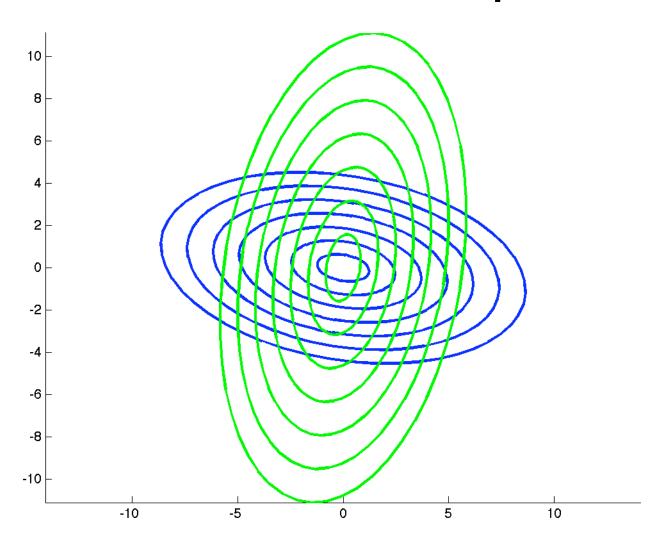
- Related to norm duality
- Useful for helping visualize cones

Duality of norms

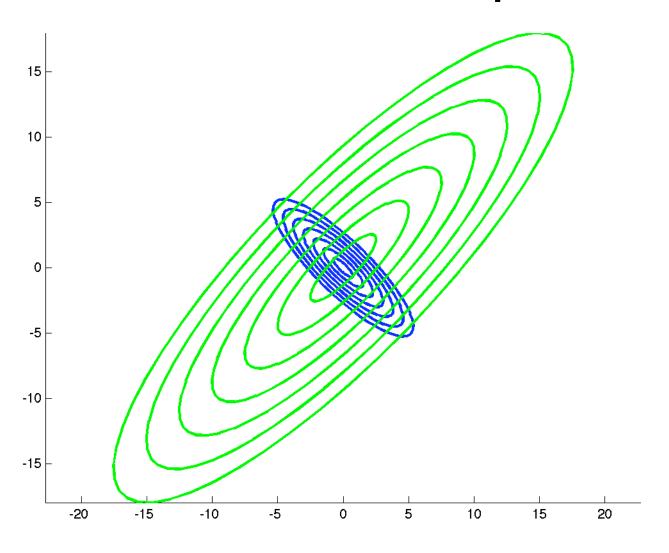
Dual norm definition||y||_{*} = max

Motivation: Holder's inequality
 x^Ty ≤ ||x|| ||y||_{*}

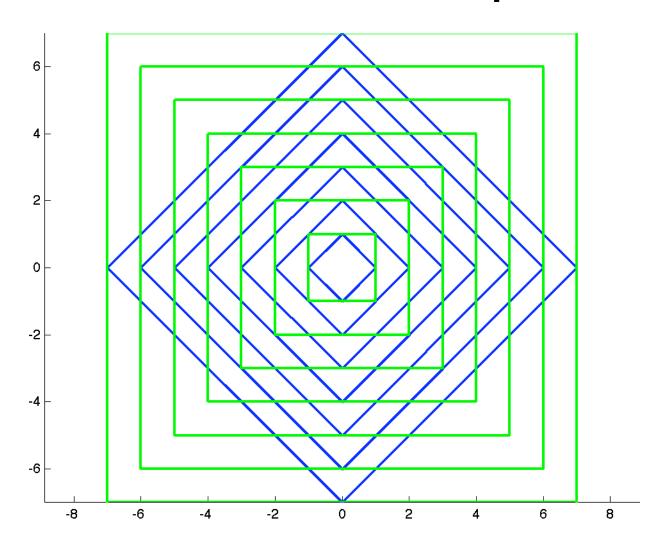
Dual norm examples



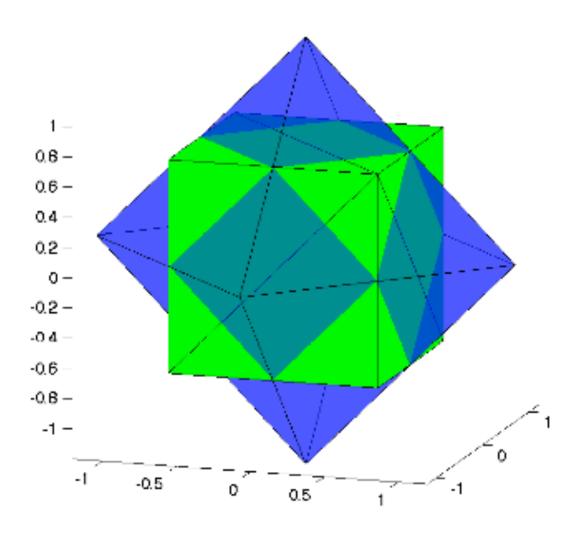
Dual norm examples



Dual norm examples



Cuboctahedron



||y||* is a norm

• ||y||_{*} ≥ 0:

• $||ky||_* = |k| ||y||_*$:

• $||y||_* = 0$ iff y = 0:

• $||y_1+y_2||_* \le ||y_1||_* + ||y_2||_*$

Dual-norm balls

• $\{ y \mid ||y||_* \le 1 \} =$

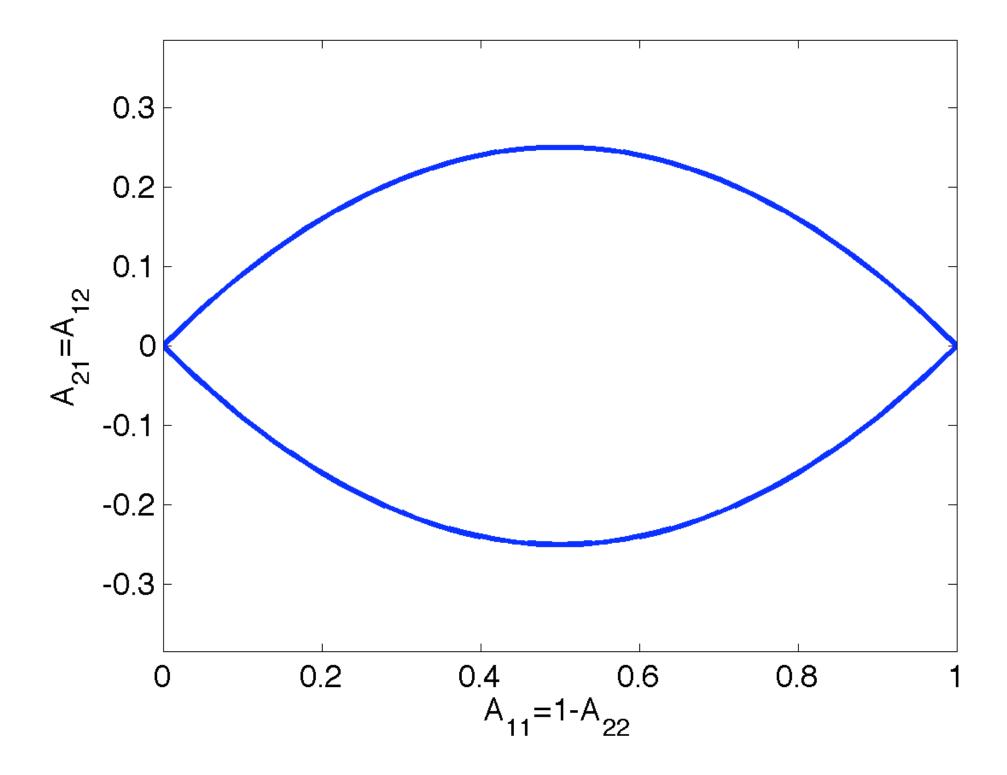
• Duality of norms:

Visualizing cones

- Suppose we have some weird cone in high dimensions (say, K = S₊)
- Often easy to get a vector u in K ∩ K*
 -e.g., I ∈ S₊, I ∈ S₊* = S₊
- Plot K ∩ { u^Tx = 1 } and K* ∩ { u^Tx = 1 } instead of K, K*
 - saves a dimension

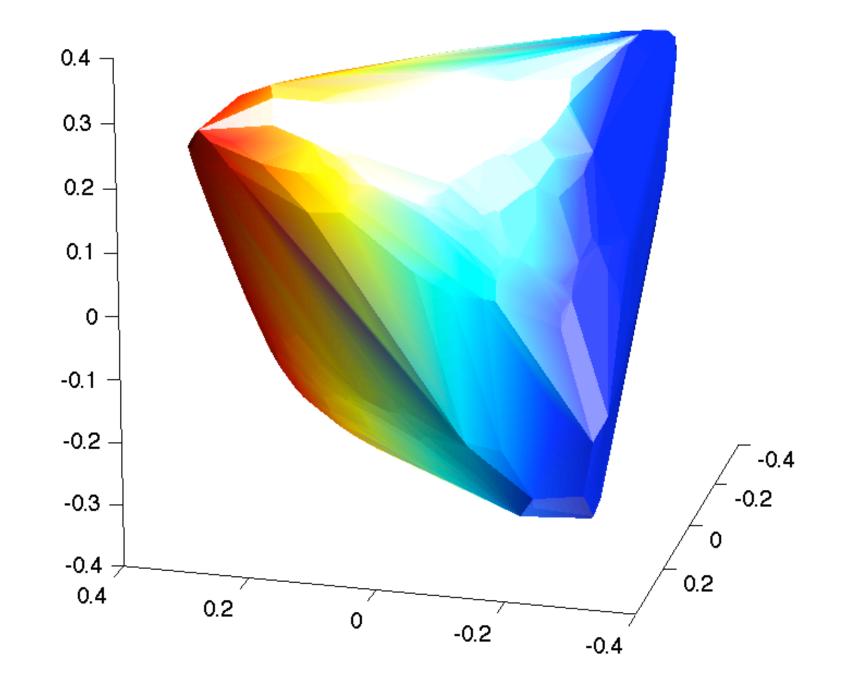
Visualizing S₊

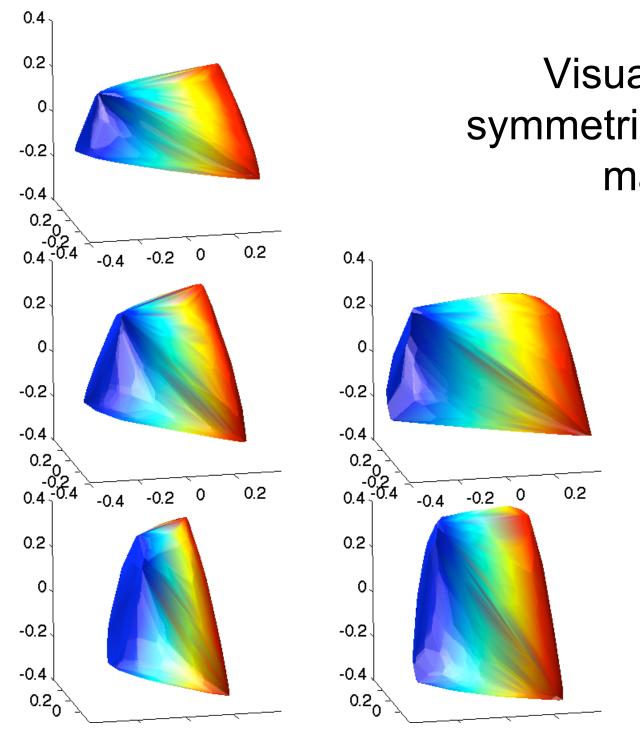
- Say, 2 x 2 symmetric matrices
- Add constraint $tr(X^TI) = 1$
- Result: a 2D set



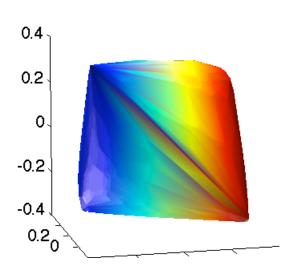
What about 3 x 3?

- 6 parameters in raw form
- Still 5 after tr(X)=1
- Try setting entire diagonal to 1/3
 - plot off-diagonal elements





Visualizing 3*3 symmetric semidefinite matrices



Multi-criterion optimization

Ordinary feasible region

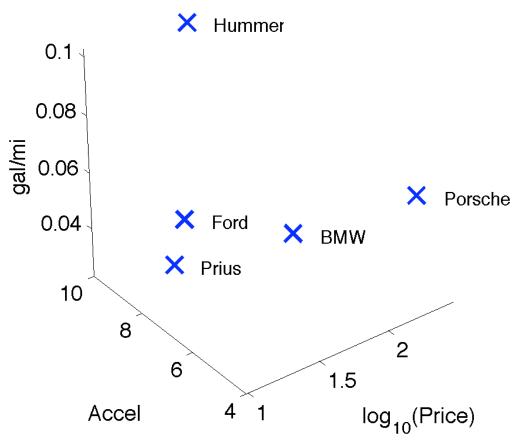
Indecisive optimizer: wants all of

Buying the perfect car

\$K 0-60 MPG

Pareto optimality

x* Pareto optimal =



Pareto examples

Scalarization

• To find Pareto optima of convex problem: