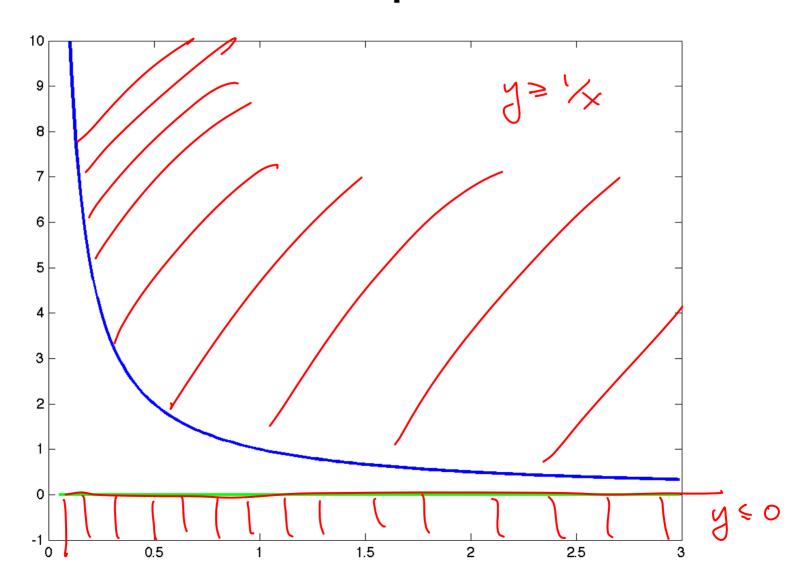
Separating hyperplanes

- S a closed, convex set
 - Point x not in S
 - Point x not in S
 ∃y, b. y^xx +b < 0 ^
 => strict separating hyperplane

- Suppose S, T two closed convex sets
- Can they be strictly separated?

not intersecting
$$S \Lambda T = \phi$$

Example



K* = {y | y * = 0 Hx ek}

Intersection and union

•
$$(K_1 \cup K_2)^* = K_1^* \cap K_2^*$$
 $y \in K_1^* \cap K_2^* \iff (y^T \times \ge 0 \ \forall \times \in K_1) \land (y^T \times \ge 0 \ \forall \times \in K_2)$
 $y^T \times \ge 0 \ \forall \times \in K_1 \cup K_2 \iff y \in (K_1 \cup K_2)^*$
 $(K_1 \cup K_2)^{**} = (K_1^* \cap K_2^*)^* \quad \text{Define } K_3 = K_1^* \quad K_4 = K_2^*$
 $= (K_3 \cap K_4)^* = (K_3 \cap K_1)^* \quad K_3 \text{ and } K_4 \text{ closed } f$
 $= (K_3 \cap K_4)^* = cl conv (closev K_1 \cup closev K_2) \quad convey$
 $= (K_3 \cap K_4)^* = cl conv (closev K_1 \cup closev K_2) \quad (K_2^*)^* = K_1^*$

Flat, pointed, solid, proper

- Kis flat if: $\exists_{\times}^{\times} \forall \lambda \in \mathbb{R}$. $\lambda \times \in \mathbb{K}$
- E.g., K = {(x,y,z) | x≥0, y≥0} (1,1,z) ∈ K
- K is pointed if: ^o+ Flat
- E.g., K = { (x,y,7) | x=0, y, ≥≥0} ≥ improper
- · Kis proper if: K, K* both pointed
- E.g., $K = \{(x,y,z) \mid x \neq 0, y \neq 0, z \neq 0\}$ $\Rightarrow \text{ int } k \neq \emptyset \text{ int } k \neq \emptyset$

Generalized inequalities • Given proper cone K

- $x \ge_K y$ iff $x y \ge_K 0$ iff $x y \ge_K 0$
- X = ky ^ y = k = x-y+y-zek
 - x >_K y iff x ≥_K y and x != y
 - x ≤_K y and x <_K y: as expected
 - Transitive:
 - $x \ge R_+^{1} y \iff x; \ge y; \forall i$ Examples: X > St y D X-y positive semidefinite X > y X 7 y

- Dual sets

 | Arbitary C:
 | K = \{(x,s) | x \in s \cdot) \}
- Any convex set C
 -e.g., {×/A+b≥0}
- can be represented as intersection of
 a convex cone: (x,s) | Ax + bs > 0 } $A \times + b \times s - \times (A \times + b s) > 0$
 - and the hyperplane: $\{(x,s) \mid s=1\}$ $\{(x,v) \mid A \times +b \ge b\}$

For example

• Dual of unit sphere $3 = \{ \times | 1 \times 1 \le 1 \}$ Soc = { (x,5) | ||x|| ∈ 5 } SOC 1 { (x, s) | S=13 = {(x, s) | ||x|| \in ||} = 5 $B^* = \{-soc^* \cap \{(y,t) \mid t=-1\} = \{\|y\| \le 1\} = B$ Soc - soc = { (-y,-t) | lly 11 st, t = 0} { (-y,-1) | | | | | | | | } _

Equivalent definition

$$C^* = \{ y \mid y^T \times \subseteq 1 \ \forall x \in C \}$$

$$\mathcal{K} = \{ (x,s) \mid x \in SC, s \geqslant 0 \}$$

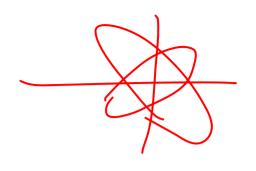
$$\mathcal{K}^* = \{ (y,t) \mid x^T y + st \geqslant 0 \ \forall (x,s) \in \mathcal{K} \}$$

$$-\mathcal{K}^* = \{ (-y'-t) \mid x^T y' + st' \geqslant 0 \ \forall (x,s) \in \mathcal{K} \}$$

$$-\mathcal{K}^* = \{ (-y'-t) \mid x^T y' + st' \geqslant 0 \ \forall (x,s) \in \mathcal{K} \}$$

$$-\mathcal{K}^* = \{ (-y'-t) \mid x^T y' + st' \geqslant 0 \ \forall (x,s) \in \mathcal{K} \}$$

More examples

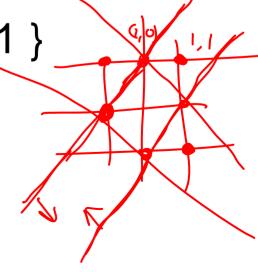


A invertible, A > 0

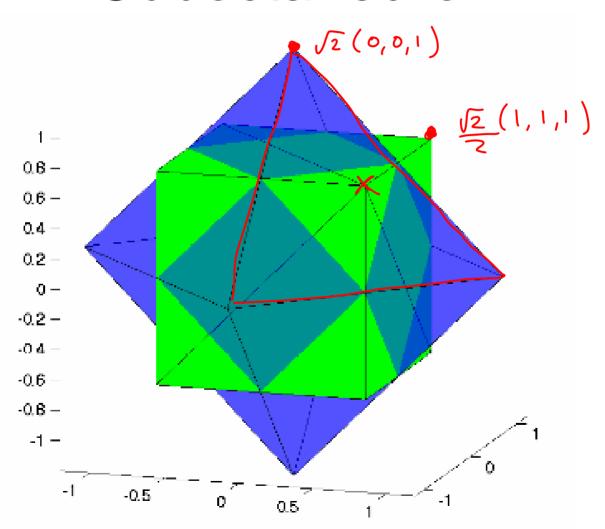
A=
$$U^TU$$
 U invertible

 $\frac{Z = U \times}{x^T A \times EI} \iff x^T U^T U \times EI$
 $\implies 2^T 2 \le 1$

• Unit square $\{(x, y) | -1 \le x, y \le 1\}$

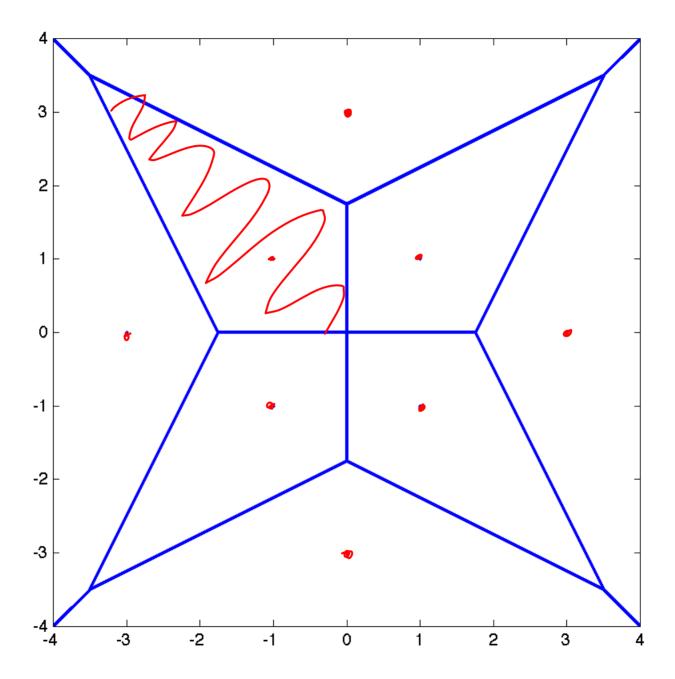


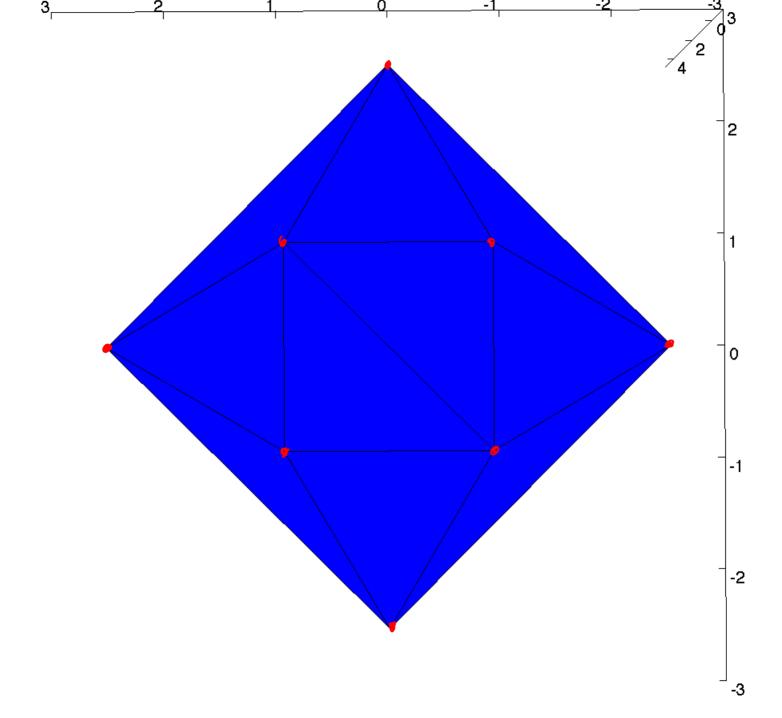
Cuboctahedron

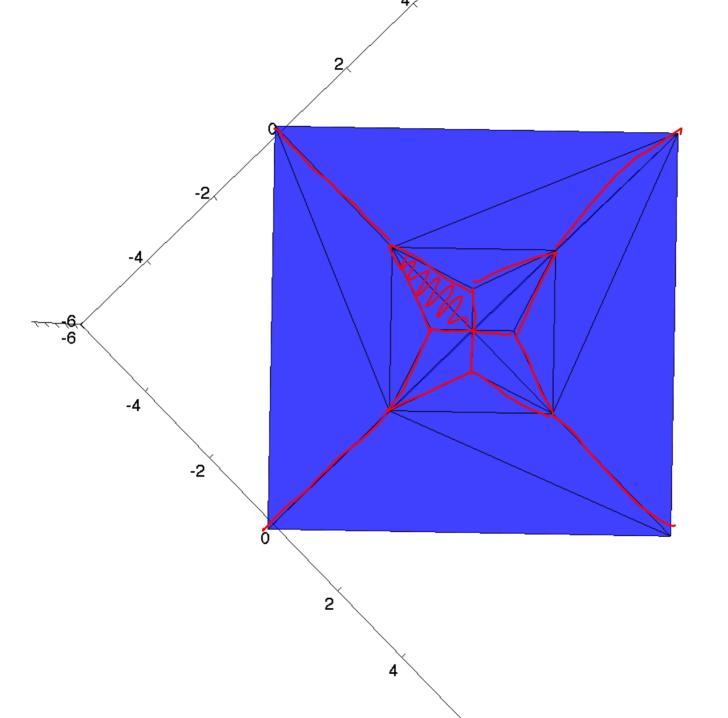


Voronoi diagram

- Given points $x_i \in R^n$ $x_i \dots x_k$
- Voronoi region for x_i : $\{x \mid \|x x_i\| \le \|x x_j\| \forall j \ne i \}$







Properties of dual sets

- Face of set <==> corner of dual
- Corner of set <==> face of dual
- A ⊆ B ⇔ A*⊇ B*
- A* is closed and convex
- A** = A if A closed, conex
- (A ∩ B)* = conv (A* ∪ B*) if A, B closer, convex