Ex: minimum volume ellipsoid

- Given points $\underline{x_1, x_2, ..., x_k}$

•
$$\min_{A,x_C} \text{ yol}(A)$$
 s.t.

$$(x_i - x_C)^T A (x_i - x_C) \le 1 \quad i = 1, ..., k$$

$$A\in S^{n^*n}$$

$$A \ge 0$$

$$\ln vol(A) = -\frac{1}{2} \ln |A| + const$$

Schur complement

- Symmetric block matrix M =
- Schur complement is S =
 M ¾ 0 iff A ≥ 0 and S > 0

Back to min-volume ellipsoid

$$\max_{A,x_{c}} \log |A| \text{ s.t.} \qquad \forall i = 1, ..., k$$

$$(x_{i} - x_{c})^{T} A (x_{i} - x_{c}) \leq 1 \quad i = 1, ..., k$$

$$A = A^{T}, A \geq 0$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$A^{+} B^{+} u^{+} \geq 0$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$A^{+} B^{+} u^{+} \geq 0$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$A^{+} A \geq 0$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z} \log |A| \text{ s.t.} \qquad \exists = 1, ..., k$$

$$\max_{A,B,u,z}$$

Ex: manifold learning

- Given points $x_1, ..., x_m$
- Find points $y_1, ..., y_m \in \mathbb{R}^{d}$
- Preserving local geometry
 - neighbor edges N (i,j) $\in \mathbb{N}$ \iff preserve geometry brown \times_i , \times_j distances $\|x_i x_j\| = \|y_i y_j\|$ (i,j) $\in \mathbb{N}$
- If we preserve distances we also preserve angles $(x_i - x_i) \cdot (x_i - x_e)$

Step 1: "embed" Rⁿ into Rⁿ

While preserving local distances, move points to make manifold as flat as possible

possible

max $\sum_{i=1}^{n} \sum_{j=1}^{n} \|z_{i} - z_{j}\|^{2} = 2\sum_{i=1}^{n} \sum_{j=1}^{n} |z_{i} - z_{j}|^{2} = 2\sum_{i=1}^{n} \sum_{j=1}^{n} |z_{i} - z_{j}|^{2} = 2\sum_{i=1}^{n} |z_{i} - z_{j}|^{2} =$

Step 2: reduce to Rd ?

• Now that manifold is flat, just use PCA:

Maximizing variance

• max
$$\begin{cases} z_{1}^{T}z_{i} \\ x_{2}^{T}z_{3} \end{cases}$$
 s.t. $\begin{cases} z_{2}^{T}z_{3} \\ x_{3}^{T}z_{4} \end{cases}$ s.t. $\begin{cases} z_{3}^{T}z_{4} \\ x_{3}^{T}z_{4} \end{cases}$ $\begin{cases} x_{1}^{T}z_{2}^{T}z_{3} \\ x_{2}^{T}z_{3} \end{cases}$ $\begin{cases} x_{2}^{T}z_{3}^{T}z_{4} \\ x_{3}^{T}z_{4} \end{cases} = \begin{cases} x_{1}^{T}z_{3}^{T}z_{4} \\ x_{3}^{T}z_{4} \end{cases} = \begin{cases} x_{1}^{T}z_{3}^{T}z_{4} \\ x_{3}^{T}z_{4} \end{cases} = \begin{cases} x_{1}^{T}z_{4}^{T}z_{4} \\ x_{2}^{T}z_{4}^{T}z_{4} \end{cases} = \begin{cases} x_{1}^{T}z_{4}^{T}z_{4}^{T}z_{4} \\ x_{2}^{T}z_{4}^{T}z_{4} \end{cases} = \begin{cases} x_{1}^{T}z_{4}^{T}z_{4} \\ x_{2}^{T}z_{4}^{T}z_{4} \end{cases} = \begin{cases} x_{1}^{T}z_{4}^{T}z_{4} \\ x_{2}^{T}z_{4}^{T}z_{4} \end{cases} = \begin{cases} x_{1}^{T}z_{4}^{T}z_{4}^{T}z_{4} \\ x_{2}^{T}z_{4}^{T}z_{4} \end{cases} = \begin{cases} x_{1}^{T}z_{4}^{T}z_{4}^{T}z_{4} \\ x_{2}^{T}z_{4}^{T}z_{4} \end{cases} = \begin{cases} x_{1}^{T}z_{4}^{T}z_{4}^{T}z_{4} \\ x_{2}^{T}$

Summary

- Solve SDP to "embed" Rⁿ into Rⁿ
- Use PCA to embed Rⁿ into R^d
- Called "semidefinite embedding" or "maximum variance unfolding"

Problems?

Problem: solving SDP

- Kernel matrix K ≈ ××[™]
- Idea: suppose we know a subspace that preserves geometry

Side note: non-Euclidean

- If original distances are not Euclidean, might not be able to duplicate them exactly in Euclidean Rⁿ
- Would need to soften constraints:
 approximately preserve local distances