Convex optimization minimize subject to Ax=5

e.g., min x^2+y^2 s.t. $1-x-y \le 0$

Optimality

$$v^* = \inf \{ f(x) \mid g_i(x) \le 0 \ (\forall i), \ Ax = b \}$$

• Definition of $\underline{v}^* = \inf S$: $\subseteq \mathbb{R}$

For example: inf { e^x | x real } =

Sup (Supremum) tightest upper bound

Also, JxeS

Optimal point

x* is optimal iff:

Is there always an optimal point?

-ex. 1:

- ex. 2:

Local optima

- min f(x) s.t. $g(x) \le 0$
- x₀ is a local optimum iff

In a convex program,

An optimality criterion

- Suppose f(x) is differentiable, convex
- Then $x^* = arg min f(x) iff$
- What about $x^* = arg min f(x) s.t. x \in C$?

Proof of criterion

Types of convex program

- Linear program, quadratic program
- Second-order cone program

Semidefinite program

Example: logistic regression

- Data $x_i \in R, y_i \in \{0,1\}$
- $P(y_i = 1 \mid x_i, w, b) = s(w^Tx_i + b)$ s(z) = 1/(1+exp(-z))

• $\max_{wb} P(w, b) P(y | x, w, b) =$ $\max_{wb} P(w, b) \prod_{i} P(y_{i} | x_{i}, w, b) =$

Ex: minimize top eigenvalue

- Suppose $A_i \in S^{n^*n}$ for $i = \{1, 2, ...\}$
- $min_{\alpha,A}$ $\lambda_1(A)$ s.t.

$$A = \alpha_1 A_1 + \alpha_2 A_2 + \dots$$

Ex: minimum volume ellipsoid

- Given points x₁, x₂, ..., x_k
- $\min_{A,x_{C}} \text{ vol}(A) \text{ s.t.}$ $(x_{i} x_{C})^{T} A (x_{i} x_{C}) \leq 1 \quad i = 1, ..., k$ $A \in S^{n*n}$ $A \geq 0$

Schur complement

- Symmetric block matrix M =
- Schur complement is S =
- M ≥ 0 iff

Back to min-volume ellipsoid

- $\max_{A,x_{c}} \log |A| \text{ s.t.}$ $(x_{i} - x_{C})^{T} A (x_{i} - x_{C}) \le 1 \quad i = 1, ..., k$ $A = A^{T}, A \ge 0$
- $\max_{A,B,x_c,z} \log |A| \text{ s.t.}$

Ex: soap bubbles

- Q: Dip a bent paper clip into soapy water. What shape film will it make?
- A:
- Write h(x,y) for height
- Suppose (x,y) in S
- Area is:

Soap bubbles

Ex: manifold learning

- Given points x₁, ..., x_m
- Find points y₁, ..., y_m
- Preserving local geometry
 - neighbor edges N
 - distances
- If we preserve distances we also preserve angles

Step 1: "embed" Rⁿ into Rⁿ

- While preserving local distances, move points to make manifold as flat as possible
- max

s.t.

Step 2: reduce to Rd

Now that manifold is flat, just use PCA:

Maximizing variance

• max s.t.

• max s.t.

Summary

- Solve SDP to "embed" Rⁿ into Rⁿ
- Use PCA to embed Rⁿ into R^d
- Called "semidefinite embedding" or "maximum variance unfolding"

Problems?

Problem: solving SDP

- Kernel matrix K
- Idea: suppose we know a subspace that preserves geometry

Ex: convex games

- "Robin hood" game:
 - shoot two arrows at target simultaneously
 - Robin Hood's cost:
 - Sheriff of Nottingham's reward:

Convex games: definition

- Players p₁, p₂, ..., p_k
- p_i chooses x_i from convex set X_i
 all simultaneously
- Cost to p_i is $f_i(x_1, x_2, ..., x_k)$
- Cost f_i is convex in x_i for fixed x_{-i}
- · Zero-sum:

2 players,
$$f_1(x_1, x_2) = -f_2(x_1, x_2)$$

Equilibrium

- Minimax equilibrium: find
 - value v
 - distribution P(x)
- such that

Multi-criterion optimization

Same feasible region as ordinary CP

Indecisive optimizer: wants all of

Multi-criterion example

Buying the perfect car

Pareto optimality

Pareto optimal =