Convex optimization

subject to

e.g., min x^2+y^2 s.t. $1-x-y \le 0$

Linear inequalities: 25 } just melule in gi's

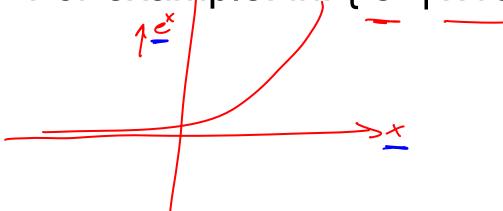
Optimality

Optimal value:

$$v^* = \inf \{ f(x) \mid g_i(x) \le 0 \ (\forall i), Ax = b \}$$

Definition of v* = inf S: ≤ R

For example: inf { e^x | x real } =



Sup (Supremum) tightest upper bound

Optimal point

- x^* is optimal iff: $f(x) = v^*$ $Ax^* = \delta g_i(x^*) \leq 0$
- Is there always an optimal point?
 - -ex. 1: max log(x) s.t. x>0
 - -ex. 2: $\min z^{*}$ st. $\times > 0$

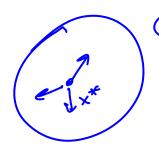
Local optima

- min f(x) s.t. $g(x) \le 0$
- x₀ is a local optimum iff

$$X_0$$
 optimel for unin $f(x)$ < .t. $g(x) \le 0$
 $||x-x_0|| \le R$

In a convex program,

all local optima are also global optima



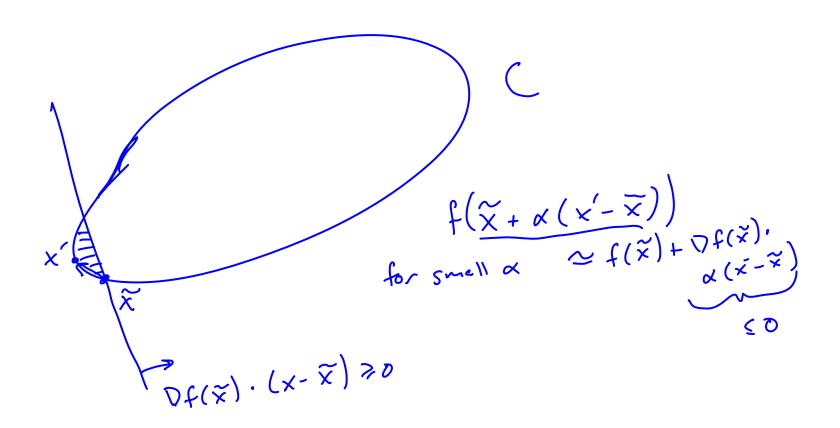
An optimality criterion

- Suppose f(x) is <u>differentiable</u>, convex
- Then $x^* = \arg \min f(x)$ iff $\nabla f(x^*) = 0$
- What about x* = arg min f(x) s.t. x ∈ C?

$$\rightarrow x^* \in \mathcal{E}C \Rightarrow \nabla f(x^*) \cdot (x - x^*) \geq 0 \quad \forall x \in C$$

$$\Delta t(x_k) \cdot (x - x_k) = 0$$

Proof of criterion



Types of convex program

- Linear program, quadratic program

• Second-order cone program

win
$$f^{T} \times s.t.$$
 $F \times = g$
 $A_{i} \times t + b_{i} \parallel c c_{i} \cdot x + d_{i}$
 $A_{i} \times t + b_{i} \parallel c c_{i} \cdot x + d_{i}$
 $A_{i} \times t + b_{i} \parallel c c_{i} \cdot x + d_{i}$
 $A_{i} \times t + b_{i} \parallel c c_{i} \cdot x + d_{i}$

Semidefinite program

min
$$c^{T} \times s.t.$$

$$F_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$F_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$F_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Example: logistic regression

• Data $x_i \in R, y_i \in \{0,1\}$

5(2) 11

• $P(y_i = 1 \mid x_i, w, b) = s(w^Tx_i + b)$ s(z) = 1/(1+exp(-z))

•
$$\max_{wb} P(w, b) P(y \mid x, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) \prod_{i} P(y_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) \prod_{i} P(y_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x| \in \mathbb{Z}_{2}} P(w, b) + \sum_{i} (x_{i} \mid x_{i}, w, b) = \lim_{|x|$$

- ha (s(2))

Ex: minimize top eigenvalue

• Suppose $A_i \in S^{n^*n}$ for $i = \{1, 2, ...\}$

$$A = \alpha_1 A_1 + \alpha_2 A_2 + \dots$$

•
$$\min_{\alpha,A} \frac{\lambda_1(A)}{A} \text{ s.t.}$$

$$A = \frac{\alpha_1 A_1 + \alpha_2 A_2 + \dots}{\lambda_1 \alpha_{i_1} A_i}$$

$$\lambda_1(A) \text{ s.t.}$$

$$\lambda_2(A) \text{ s.t.}$$

$$\lambda_3(A) \text{ s.t.}$$

$$\lambda_4(A) \text{ s.t.}$$

Ex: minimum volume ellipsoid

- Given points $\underline{x_1}, x_2, ..., x_k$
- $\min_{A,x_c} \text{ vol}(A) \text{ s.t.}$

$$(x_i - x_C)^T A (x_i - x_C) \le 1$$
 $i = 1, ..., k$

$$A\in S^{n^*n}$$

$$A \ge 0$$

vol (A)
$$\propto \frac{1}{\sqrt{|A|}}$$

$$\ln vol(A) = -\frac{1}{2} \ln |A| + const$$

Schur complement

- Symmetric block matrix M = (A B B)
 Schur complement is S =

$$M \geq 0$$
 iff min $x^TMx = 0$
 $x = \begin{pmatrix} u \\ v \end{pmatrix}$ $x^TMx = u^TAu + v^TCv + 2u^TBv$
 $x = \begin{pmatrix} u \\ v \end{pmatrix}$ $x^TMx = u^TAu + v^TCv + 2u^TBv$
 $x = \begin{pmatrix} u \\ v \end{pmatrix}$ $x^TMx = u^TAu + v^TCv + 2u^TBv$
 $x = \begin{pmatrix} u \\ v \end{pmatrix}$ $x^TMx = u^TAu + v^TCv - 2v^TB^TA^TBv$
 $x = \begin{pmatrix} u \\ v \end{pmatrix}$ x

-> want: xiTAx; -2xiTAx; +xtTAx; (1)

Back to min-volume ellipsoid

• $\max_{A,x_c} |\log |A|$ s.t. $\forall_i \in \binom{x_i}{i}$

$$(x_i - x_C)^T A (x_i - x_C) \le 1 \quad i = 1, ..., k$$

$$A = A^T, A \ge 0$$

• max log |A| s.t.
$$B = \begin{cases}
A & X_c \\
X_c & Z
\end{cases}$$

$$B = B^T \quad B \geq 0 \iff A \geq 0 \quad A \geq -X_c \quad A^T \times A^T \times C \geq 0$$

$$A = A \geq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \geq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \geq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \geq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \geq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \geq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \leq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \leq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \leq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \leq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \leq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \leq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A^T \times C \leq 0$$

$$A = A \leq 0 \quad A \leq -X_c \quad A$$

Ex: soap bubbles

- Q: Dip a bent paper clip into soapy water. What shape film will it make?
- · A! minimum ara suface
- Write h(x,y) for height
- Suppose (x,y) in S→
 Area is: ∫_S√(x,y)²√xxy

$$Area = \frac{h_i = h(x_i, y_i)}{\sum_{i=1}^{l} \frac{1}{e^2} \sqrt{1 + \left(\frac{h_i - h_{i}}{e}\right)^2 + \left(\frac{h_{D(i)} - h_i}{e}\right)^2}}$$

$$i \in I$$

$$X_{R(i)} = X_i + e^{-x_i}$$

$$X_{R(i)} = X_i + e^{-x_i}$$

$$X_{R(i)} = X_i + e^{-x_i}$$

$$\lim_{t \to \infty} \frac{1}{\epsilon^2} t_i$$

$$= \lim_{t \to \infty} \frac{1}{\epsilon^2} \left(\lim_{t \to \infty} \frac{1}{(h_{2(i)})} \right) / \epsilon$$

$$= \lim_{t \to \infty} \frac{1}{\epsilon^2} t_i$$

$$= \lim_{t \to \infty} \frac{1}{(h_{2(i)})} / \epsilon$$

$$= \lim_{t \to \infty} \frac{1}{(h_{2(i)})} / \epsilon$$

Ex: manifold learning

- Given points x₁, ..., x_m
 Find points y₁, ..., y_m ∈ R^d
 Preserving *

 - Preserving local geometry
 - neighbor edges N (i,j) $\in N$ \iff preserve scoretry brown \times_i , \times_j distances $\|x_i x_j\| = \|y_i y_j\|$ (i,j) $\in N$
 - If we preserve distances we also preserve angles $(x_i - x_i) \cdot (x_i - x_i)$

Step 1: "embed" Rⁿ into Rⁿ

- While preserving local distances, move points to make manifold as flat as possible
- max

s.t.

Step 2: reduce to Rd

Now that manifold is flat, just use PCA: