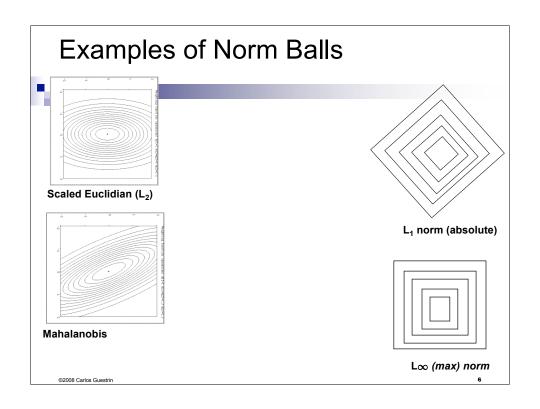


```
First non-linear example:

Euclidean balls and Ellipsoids

B(x_c,r) - \text{ball centered at } x_c \text{ centered at } r:
B(x_c,r) = \{x \mid ||x_-x_c||_L \le r\}
=
```



Norm balls

- Convexity of norm balls
 - □ Properties of norms:
 - Scaling
 - Triangle inequality
- Norm balls are extremely important in ML

Ш

What about achieving a norm with equality?

©2008 Carlos Guestrin

7

Cones

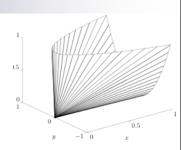
- Set C is a cone if set is invariant to non-negative scaling
- If the cone is convex, we call it:
 - extremely important in ML (as we'll see)
- A cool cone: The ice cream cone
 - □ a.k.a. second order cone

©2008 Carlos Guestrin

Positive semidefinite cone

Positive semidefinite matrices:

- Positive semidefinite cone:
- Alternate definition: Eigenvalues
- Convexity:



$$X = \left[\begin{array}{cc} x & y \\ y & z \end{array} \right]$$

- Examples in ML:
- A fundamental convex set
 - Useful in a huge number of applications
 - Basis for very cool approximation algorithms
 - Generalizes pretty many "named" convex optimization problems

Operations that preserve convexity 1: Intersection

Intersection of convex sets is convex

- Examples:
 - Polyhedron
 - □ Robust linear regression
 - □ Positive semidefinite cone

©2008 Carlos Guestrin

Operations that preserve convexity 2: Affine functions

- Affine function: f(x) = Ax + b
- Set S is convex
 - □ Image of S under f is convex
- Translation:
- Scaling:
- General affine transformation:
- Why is ellipsoid convex?
 - $(x-x_c)^T \sum_{x=0}^{-1} (x-x_c) \le 1$
 - \square Σ is positive semidefinite

©2008 Carlos Guestrin

11

Operations that preserve convexity 3: Linear-fractional functions

- Linear fractional functions:

 - □ Closely related to perspective projections (useful in computer vision)
- Given convex set C, image according to linear fractional function:
- Example:

©2008 Carlos Guestrin

Separating hyperplane theorem

- **Theorem**: Every two non-intersecting convex sets *C* and *D* have a separating hyperplane:
- Intuition of proof (for special case)
 - □ Minimum distance between sets:
 - If minimum is achieved in the sets (e.g., both sets closed, and one is bounded), then

©2008 Carlos Guestrin

13

Supporting hyperplane

- General definition: Some set C ⊆ Rⁿ
 - \square Point x_0 on boundary
 - Boundary is the closure of the set minus its interior
 - Supporting hyperplane:
 - Geometrically: a tangent at x₀
 - Half-space contains C:
- **Theorem**: for any non-empty convex set *C*, and any point x₀ in the boundary of *C*, there exists (at least one) supporting hyperplane at x₀
- (One) **Converse**: If set *C* is closed with non-empty interior, and there is a supporting hyperplane at every boundary point, then *C* is convex

©2008 Carlos Guestrin

What you need to know

- Definitions of convex sets
 - Main examples of convex sets
- Proving a set is convex
- Operations that preserve convexity
 - ☐ There are many many many other operations that preserve convexity
 - See book for several more examples
- Separating and supporting hyperplanes

©2008 Carlos Guestrin

15

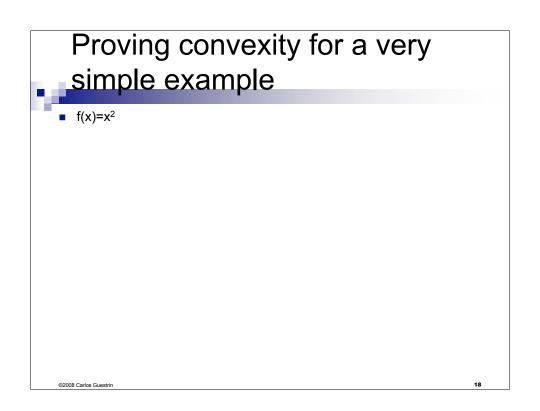
Convex Functions

- Function f:Rⁿ→R is convex if
 - □ Domain is convex

- Generalization: Jensen's inequality:
- Strictly convex function:

©2008 Carlos Guestrin

Concave functions Function f is concave if Strictly concave: We will be able to optimize:



First order condition

If f is differentiable in all dom f

■ Then f convex if and only if dom f is convex and

©2008 Carlos Guestrin

19

Second order condition (1D f)

■ If f is twice differentiable in dom f

- Then f convex if and only if **dom** f is convex and
- Note 1: Strictly convex if:
- Note 2: dom f must be convex
 - $\Box f(x)=1/x^2$
 - □ dom f = $\{x \in R | x \neq 0\}$

©2008 Carlos Guestrin

Second order condition (general case)

- If f is twice differentiable in **dom** f
- Then f convex if and only if **dom** f is convex and
- Note 1: Strictly convex if:

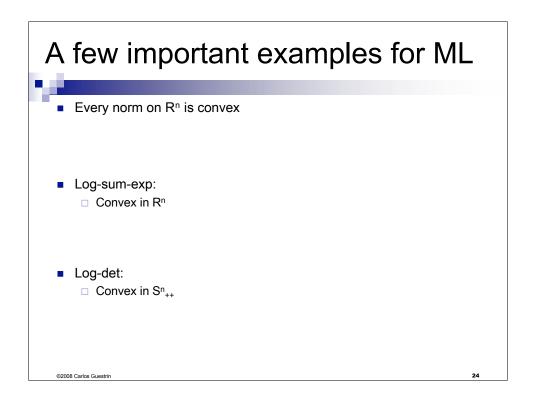
©2008 Carlos Guestrin

21

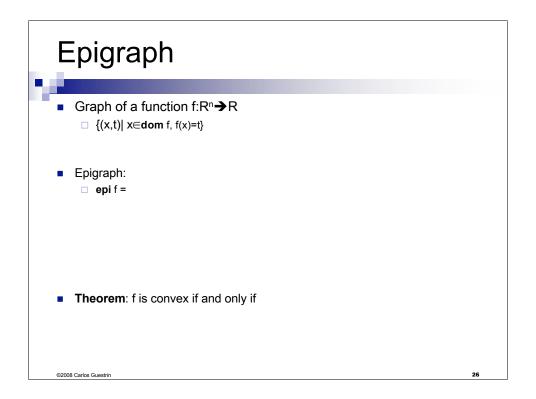
Quadratic programming

- $f(x) = (1/2) x^T A x + b^T x + c$
- Convex if:
- Strictly convex if:
- Concave if:
- Strictly concave if:

©2008 Carlos Guestrin



Extended-value extensions Convex function f over convex dom f Extended-value extension: Still convex: Very nice for notation, e.g., Minimization: Sum: f₁ over convex dom f₁ f₂ over convex dom f₂



Support of a convex set and epigraph

- If f is convex & differentiable
- For $(x,t) \in epi f$, $t \ge f(x)$, thus:

Rewriting:

$$(x,t) \in \mathbf{epi} f \Rightarrow \left[\begin{array}{c} \nabla f(x_0) \\ -1 \end{array} \right]^T \left(\left[\begin{array}{c} x \\ t \end{array} \right] - \left[\begin{array}{c} x_0 \\ f(x_0) \end{array} \right] \right) \leq 0$$

- Thus, if convex set is defined by epigraph of convex function
 - □ Obtain support of set by gradient!!
 - □ If f is not differentiable

©2008 Carlos Guestrin