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Definitions of convex sets
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General convex hull
"

= Given some set C QO
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m Usefulness:

Examples of convex sets we

. hayg already seen...
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First non-linear example:
Euclidean balls and Ellipsoids
" SRS

m B(x.r) - ball centered at x, centered at r:

B&er) = §x | Ix~%ch < 3§

= (x| o=y

m  Convexity:

X, Xy e BlXe,v) , 0% tli-8)e & B, r)

W 64 -0 —xclly = 11O% +(1-0Ya- oxe - (1-e)cll,

- ¢ oK -oxl, + )y - (e,

= Ellipsoid: - Sl 4 ((-01 06 Ll v ool [
N o

EHIPst © ll)(|
(XX ) T2 (Xx%,) = 1 L -
Q}sitive semidefinitﬁéb\

Convey

©2008 Carlos Guestrin

Examples of Norm Balls

Scaled Euclidian (L,)

L, norm (absolute)

Mahalanobis
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Norm balls
"
m Convexity of norm balls

Properties of norms:
= Scaling
= Triangle inequality

m  Norm balls are extremely important in ML

m What about achieving a norm with equality?
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Cones
" JdEE

m Set Cis a cone if set is invariant to non-negative scaling

m [f the cone is convex, we call it:
extremely important in ML (as we’ll see)

m A cool cone: The ice cream cone
a.k.a. second order cone
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Positive semidefinite cone

m  Positive semidefinite matrices:

Positive semidefinite cone: i3
Alternate definition: Eigenvalues

Convexity: X B [ Ty :|

Examples in ML:

A fundamental convex set
Useful in a huge number of applications
Basis for very cool approximation algorithms

Generalizes pretty many “named” convex optimization problems
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Operations that preserve

gg“%iw 1: Intersection

m Intersection of convex sets is convex

m Examples:
Polyhedron

Robust linear regression

Positive semidefinite cone
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Operations that preserve convexity 2:
Affine functions
" JEE

m  Affine function: f(x)=Ax+b
m  Set S is convex

Image of S under f is convex
m  Translation:
m  Scaling:
m  General affine transformation:
m  Why is ellipsoid convex?

(x%o)TE (k%) = 1

> is positive semidefinite
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Operations that preserve convexity 3:
Linear-fractional functions
"

m Linear fractional functions:

Closely related to perspective projections (useful in computer vision)

m  Given convex set C, image according to linear fractional function:

m Example:
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Separating hyperplane theorem
* JdE

m Theorem: Every two non-intersecting convex sets C and D have a
separating hyperplane:

m Intuition of proof (for special case)
Minimum distance between sets:
If minimum is achieved in the sets (e.g., both sets closed, and one is bounded),
then
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Supporting hyperplane
"

m  General definition: Some set C C R"
Point x, on boundary
= Boundary is the closure of the set minus its interior
Supporting hyperplane:
= Geometrically: a tangent at x,
= Half-space contains C:

m Theorem: for any non-empty convex set C, and any point x, in the boundary
of C, there exists (at least one) supporting hyperplane at x,

m (One) Converse: If set C is closed with non-empty interior, and there is a
supporting hyperplane at every boundary point, then C is convex
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What you need to know
" J
m Definitions of convex sets
Main examples of convex sets
m Proving a set is convex

m Operations that preserve convexity

There are many many many other operations that
preserve convexity
= See book for several more examples

m Separating and supporting hyperplanes
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Convex Functions
" 00

m Function f:R"=2R is convex if
Domain is convex

m  Generalization: Jensen'’s inequality:

m Strictly convex function:
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Concave functions
"

m Function f is concave if

m Strictly concave:

= We will be able to optimize:

Proving convexity for a very

. SimRle example

= f(x)=x?




First order condition
= JEE

m If f is differentiable in all dom f

m Then f convex if and only if dom f is convex and
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Second order condition (1D f)
" JE

m [f fis twice differentiable in dom f

m  Then f convex if and only if dom f is convex and

m  Note 1: Strictly convex if:
m Note 2: dom f must be convex

f(x)=1/x2
dom f = {xER|x=0}
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Second order condition

. Jgeneral.case)

m [f fis twice differentiable in dom f

m  Then f convex if and only if dom f is convex and

m  Note 1: Strictly convex if:
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Quadratic programming

" JE
m f(x)=(1/2) xTAx+bT™x + ¢

Convex if:
Strictly convex if:

Concave fif:
Strictly concave if:
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Simple examples
“

m Exponentiation: e

convex on R, any aeR

m Powers: x2onR,,

Convex for a<0 or a=1

Concave for 0<a=<1

m  Logarithm: log x
Concave on R,

= Entropy: -x log x
Concave on R,
(0 log 0 = 0)
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A few important examples for ML

m  Every norm on R" is convex

m Log-sum-exp:
Convex in Rn

m Log-det:
Convex in Sn,,
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Extended-value extensions

m  Convex function f over convex dom f

m Extended-value extension:

m  Still convex:

m Very nice for notation, e.g.,
Minimization:

Sum:
= f, over convex dom f,
= f, over convex dom f,
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Epigraph
"

m Graph of a function f:R"2»R
{(x,t)] x&dom f, f(x)=t}

= Epigraph:
epif=

m  Theorem: f is convex if and only if
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Support of a convex set and epigraph
" S

m [ffis convex & differentiable
f(x)=f(xo) + VI(Xo)(x- Xo)

m For (x,t)eepif, t=f(x), thus:

= Rewriting: .
=[] (5] )=

m  Thus, if convex set is defined by epigraph of convex function
Obtain support of set by gradient!!
If f is not differentiable

©2008 Carlos Guestrin 27

14



