

General convex hull Given some set C Convex hull of C, conv C Conv C = {x | x = 20; x; , x; eC, 6; 20, 20; eq. x} Properties of convex hull: Idempotency: Ce convex conv C = C, conv C = Conv conv C Convexity: Usefulness: Obtain a lower born d on non-convex problem min f(x) econvex x X & C & Convex C COORD Carlos Guestrin

Operations that preserve convexity 2:

Affine functions

Affine functions any A and b

Affine function:
$$f(x) = Ax + b$$

Set S is convex

Image of S under f is convex

Translation: $X \in S$; $S = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Scaling: $X \in S$, $S = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Why is ellipsoid convex?

Why is ellipsoid convex?

 $S = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Why is ellipsoid convex?

 $S = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{Ax + b \mid X \in S\}$

Translation: $Ax + b = \{Ax + b \mid X \in S\} = \{$

Supporting hyperplane

- General definition: Some set C ⊆ Rⁿ
 - \square Point x_0 on boundary
 - Boundary is the closure of the set minus its interior
 - □ Supporting hyperplane:
 - Geometrically: a tangent at x₀
 - Half-space contains C:

■ **Theorem**: for any non-empty conve<u>x set C</u>, and any point x_0 in the boundary of C, there exists (at least one) supporting hyperplane at x_0

 (One) <u>Converse</u>: If set C is closed with non-empty interior, and there is a supporting hyperplane at every boundary <u>point</u>, then C is convex

©2008 Carlos Guestrin

What you need to know

- Definitions of convex sets
 - Main examples of convex sets
- Proving a set is convex
- Operations that preserve convexity
 - □ There are many many many other operations that preserve convexity
 - See book for several more examples
- Separating and supporting hyperplanes

Convex Functions

Function f:Rⁿ→R is convex if
 Domain is convex domf convex sxt
 ∀x,y ∈ domf, ⊕ ∈ (0,1]

- $f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y)$
- Generalization: Jensen's inequality:

 prob dist x e convex donoin of f

f[E(x]) < E, [fx]] R.g., EM

■ Strictly convex function: $\ell.g.$, $\int_{-\infty}^{\infty} \frac{1}{\sqrt{1-0}} \frac{1}{\sqrt{$

Concave functions

• Function f is concave if

· don f is convex

- f is convex

$$f(ex + (i-e)y) \Rightarrow ef(x) + (i-e)f(y)$$

• Strictly concave: $-f$ is strictly convex

• We will be able to optimize: "Casy"

 $f(x) = f(x) = f(x) = f(x)$
 $f(x) = f(x)$

First order condition

If f is differentiable in all dom f

■ Then f convex if and only if **dom** f is convex and

©2008 Carlos Guestrin

19

Second order condition (1D f)

■ If f is twice differentiable in dom f

- Then f convex if and only if **dom** f is convex and
- Note 1: Strictly convex if:
- Note 2: dom f must be convex
 - \Box f(x)=1/x²
 - $\quad \ \ \, \Box \quad \text{dom f = } \{x \in R | x \neq 0\}$

©2008 Carlos Guestrin

0

Second order condition (general case)

- - If f is twice differentiable in dom f
 - Then f convex if and only if **dom** f is convex and
 - Note 1: Strictly convex if:

©2008 Carlos Guestrin

21

Quadratic programming

- $f(x) = (1/2) x^T A x + b^T x + c$
- Convex if:
- Strictly convex if:
- Concave if:
- Strictly concave if:

©2008 Carlos Guestrin

22

Simple examples - Exponentiation: eax - convex on R, any a∈R - Powers: xa on R++ - Convex for a≤0 or a≥1 - Concave for 0≤a≤1 - Logarithm: log x - Concave on R++ - Concave on R++ - Concave on R++ - Concave on R++ - Concave on R+- Concave on R+- Concave on R+- Concave on R+-

Extended-value extensions Convex function f over convex dom f Extended-value extension: Still convex: Very nice for notation, e.g., Minimization: Sum: f₁ over convex dom f₁ f₂ over convex dom f₂

Support of a convex set and epigraph

- If f is convex & differentiable
- For $(x,t) \in epi f$, $t \ge f(x)$, thus:

$$(x,t) \in \mathbf{epi} f \Rightarrow \left[\begin{array}{c} \nabla f(x_0) \\ -1 \end{array} \right]^T \left(\left[\begin{array}{c} x \\ t \end{array} \right] - \left[\begin{array}{c} x_0 \\ f(x_0) \end{array} \right] \right) \leq 0$$

- Thus, if convex set is defined by epigraph of convex function
 - □ Obtain support of set by gradient!!
 - □ If f is not differentiable