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Definitions of convex sets
Convex v. Non-convex sets

Line segment definition:

Convex combination definition:

Probabilistic interpretation:
If C ⊆ Rn is convex
Define a probability distribution
Then
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General convex hull
Given some set C

Convex hull of C,  conv C

Properties of convex hull:
Idempotency:
Convexity:

Usefulness:
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Examples of convex sets we 
have already seen…

Rn

point

half space

polyhedron

line

line segment

linear subspace
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First non-linear example: 
Euclidean balls and Ellipsoids
B(xc,r) - ball centered at xc centered at r:

Convexity:

Ellipsoid:
(x-xc)T∑-1(x-xc) ≤ 1
∑ is positive semidefinite
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Examples of Norm Balls

L1 norm (absolute)

L∞ (max) norm

Scaled Euclidian (L2)

Mahalanobis
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Norm balls
Convexity of norm balls

Properties of norms:
Scaling
Triangle inequality

Norm balls are extremely important in ML

What about achieving a norm with equality?
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Cones
Set C is a cone if set is invariant to non-negative scaling 

If the cone is convex, we call it: 
extremely important in ML (as we’ll see)

A cool cone:  The ice cream cone
a.k.a. second order cone
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Positive semidefinite cone
Positive semidefinite matrices:

Positive semidefinite cone:

Alternate definition: Eigenvalues

Convexity:

Examples in ML:

A fundamental convex set 
Useful in a huge number of applications
Basis for very cool approximation algorithms
Generalizes pretty many “named” convex optimization problems 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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Operations that preserve 
convexity 1: Intersection
Intersection of convex sets is convex

Examples:
Polyhedron

Robust linear regression

Positive semidefinite cone
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Operations that preserve convexity 2: 
Affine functions

Affine function:  f(x) = Ax + b
Set S is convex

Image of S under f is convex

Translation:

Scaling:

General affine transformation: 

Why is ellipsoid convex?
(x-xc)T∑-1(x-xc) ≤ 1
∑ is positive semidefinite
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Operations that preserve convexity 3: 
Linear-fractional functions

Linear fractional functions:

Closely related to perspective projections (useful in computer vision)

Given convex set C, image according to linear fractional function:

Example:
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Separating hyperplane theorem
Theorem: Every two non-intersecting convex sets C and D have a 
separating hyperplane:

Intuition of proof (for special case)
Minimum distance between sets:
If minimum is achieved in the sets (e.g., both sets closed, and one is bounded), 
then

14©2008 Carlos Guestrin

Supporting hyperplane
General definition: Some set C ⊆ Rn

Point x0 on boundary
Boundary is the closure of the set minus its interior

Supporting hyperplane:
Geometrically: a tangent at x0
Half-space contains C:

Theorem: for any non-empty convex set C, and any point x0 in the boundary 
of C, there exists (at least one) supporting hyperplane at x0

(One) Converse:  If set C is closed with non-empty interior, and there is a 
supporting hyperplane at every boundary point, then C is convex
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What you need to know

Definitions of convex sets
Main examples of convex sets

Proving a set is convex
Operations that preserve convexity

There are many many many other operations that 
preserve convexity

See book for several more examples

Separating and supporting hyperplanes
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Convex Functions
Function f:Rn R is convex if

Domain is convex

Generalization: Jensen’s inequality:

Strictly convex function:
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Concave functions
Function f is concave if

Strictly concave:

We will be able to optimize:
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Proving convexity for a very 
simple example
f(x)=x2
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First order condition
If f is differentiable in all dom f 

Then f convex if and only if dom f is convex and 
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Second order condition (1D f)
If f is twice differentiable in dom f

Then f convex if and only if dom f is convex and

Note 1: Strictly convex if:

Note 2: dom f must be convex
f(x)=1/x2

dom f = {x∈R|x≠0}
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Second order condition 
(general case)

If f is twice differentiable in dom f

Then f convex if and only if dom f is convex and

Note 1: Strictly convex if:
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Quadratic programming 
f(x) = (1/2) xTAx + bTx + c

Convex if:
Strictly convex if:

Concave if:
Strictly concave if:
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Simple examples
Exponentiation: eax

convex on R, any a∈R

Powers: xa on R++
Convex for a≤0 or a≥1
Concave for 0≤a≤1

Logarithm: log x
Concave on R++

Entropy: -x log x
Concave on R+

(0 log 0 = 0)

24©2008 Carlos Guestrin

A few important examples for ML
Every norm on Rn is convex

Log-sum-exp: 
Convex in Rn

Log-det: 
Convex in Sn

++
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Extended-value extensions
Convex function f over convex dom f

Extended-value extension:

Still convex:

Very nice for notation, e.g.,
Minimization:

Sum: 
f1 over convex dom f1
f2 over convex dom f2
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Epigraph
Graph of a function f:Rn R

{(x,t)| x∈dom f, f(x)=t}

Epigraph:
epi f = 

Theorem: f is convex if and only if 
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Support of a convex set and epigraph

If f is convex & differentiable
f(x)≥f(x0) + ∇f(x0)(x- x0)

For (x,t)∈epi f, t≥f(x), thus:

Rewriting:

Thus, if convex set is defined by epigraph of convex function
Obtain support of set by gradient!!
If f is not differentiable


