

Announcements Class project: □ Opportunity to explore interesting optimization problem of your choice. □ May involve optimization in some problem in ML, Al or other domain of your interest, or to implement and evaluate core optimization techniques. Some ideas in the website. □ All projects must have an implementation component, though theoretical aspects may also be explored. □ You should evaluate your approach, preferably on real-world data. □ It will be fun!!! :) Fine print: □ Class project must be about new things you have done this semester; you can't use results you have developed in previous semesters. Individual or groups of 2 students. Deliverables: ■ Brief project proposal (1 page) by March 5th in class. • Midway progress report (5 pages) describing the results of your first experiments by **April 9th** in class, worth 20% of the project grade. Poster for class poster session on May 1st, 3-6pm in the NSH Atrium, worth 20%. Write up (8 pages maximum in NIPS format, including references; this page limit is strict), due May 5th by 3pm by email, worth 60% of the project grade.

Convex optimization v. Nonlinear optimization

- Linear optimization problems
 - □ Linear objective, linear constraints
 - □ Efficient solutions!
- Nonlinear optimization
 - □ Either nonlinear constraints or objective
 - You will often hear: "problem is nonlinear, no hope to solve it... must use local search, simulated annealing..."
- Convex optimization
 - □ Many nonlinear objectives/constraints are convex
 - Efficient solutions
- Real question: "convex v. non-convex?"
 - □ Not "linear v. nonlinear?"
- Even if problem is non-convex, convexity is useful:
 - □ Convex relaxations of non-convex problems may have theoretical guarantees
 - □ Can always obtain convex lower bound to non-convex problem
 - Duality (always) and relaxation (often)
 - ☐ Can provide good starting point for local search

©2008 Carlos Guestrin

3

Outline to learning about convexity

- General definition of a convex optimization problem:
- Equivalent problem:
- How we'll learn about these problems:
 - Convex sets
 - 2. Convex functions
 - 3. Convex optimization problems
 - 4. Duality and convexity
 - 5. Algorithms for optimizing convex problems
- Applications will be discussed along the way
- Today: characterizing convex sets and some interesting examples

©2008 Carlos Guestrin

Definitions of convex sets Convex v. Non-convex sets Line segment definition: Convex combination definition: Probabilistic interpretation: If C ⊆ Rⁿ is convex Define a probability distribution Then

Examples of convex sets we have already seen...

- R^r
- point
- half space
- polyhedron
- line
- line segment
- linear subspace

©2008 Carlos Guestrin

First non-linear example: Euclidean balls and Ellipsoids

- B(x_c,r) ball centered at x_c centered at r:
 - Convexity:
 - Ellipsoid:
 - $(x-x_c)^T \sum_{x = 0}^{-1} (x-x_c) \le 1$
 - □ ∑ is positive semidefinite

©2008 Carlos Guestrin

Cones

- Set C is a cone if set is invariant to non-negative scaling
- If the cone is convex, we call it:
 - extremely important in ML (as we'll see)
- A cool cone: The ice cream cone
 - □ a.k.a. second order cone

©2008 Carlos Guestrin

11

Positive semidefinite cone

- Positive semidefinite matrices:
- Positive semidefinite cone:
- Alternate definition: Eigenvalues
- Convexity:

 $X = \begin{bmatrix} x & y \\ y & z \end{bmatrix}$

- Examples in ML:
- A fundamental convex set
 - □ Useful in a huge number of applications
 - Basis for very cool approximation algorithms
 - ☐ Generalizes pretty many "named" convex optimization problems ©2008 Carlos Guestin

Operations that preserve convexity 1: Intersection

- Intersection of convex sets is convex
- Examples:
 - □ Polyhedron
 - □ Robust linear regression
 - □ Positive semidefinite cone

©2008 Carlos Guestrin

13

Operations that preserve convexity 2: Affine functions

- Affine function: f(x) = Ax + b
- Set S is convex
 - □ Image of S under f is convex
- Translation:
- Scaling:
- General affine transformation:
- Why is ellipsoid convex?

 - □ ∑ is positive semidefinite

©2008 Carlos Guestrin

Operations that preserve convexity 3: Linear-fractional functions

Linear fractional functions:

- □ Closely related to perspective projections (useful in computer vision)
- Given convex set *C*, image according to linear fractional function:
- Example:

©2008 Carlos Guestrin

15

Separating hyperplane theorem

- **Theorem**: Every two non-intersecting convex sets *C* and *D* have a separating hyperplane:
- Intuition of proof (for special case)
 - □ Minimum distance between sets:
 - If minimum is achieved in the sets (e.g., both sets closed, and one is bounded), then

©2008 Carlos Guestrin

Supporting hyperplane

- General definition: Some set C ⊆ Rⁿ
 - \square Point x_0 on boundary
 - Boundary is the closure of the set minus its interior
 - Supporting hyperplane:
 - Geometrically: a tangent at x₀
 - Half-space contains C:
- **Theorem**: for any non-empty convex set C, and any point x_0 in the boundary of C, there exists (at least one) supporting hyperplane at x_0
- (One) Converse: If set C is closed with non-empty interior, and there is a supporting hyperplane at every boundary point, then C is convex

©2008 Carlos Guestrin

17

What you need to know

- Definitions of convex sets
 - Main examples of convex sets
- Proving a set is convex
- Operations that preserve convexity
 - □ There are many many many other operations that preserve convexity
 - See book for several more examples
- Separating and supporting hyperplanes

©2008 Carlos Guestrin