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Announcements
 Class project:

 Opportunity to explore interesting optimization problem of your choice.
 May involve optimization in some problem in ML, AI or other domain of your interest, or to

implement and evaluate core optimization techniques.
 Some ideas in the website.

 All projects must have an implementation component, though theoretical aspects may also
be explored.

 You should evaluate your approach, preferably on real-world data.
 It will be fun!!! :)

 Fine print:
 Class project must be about new things you have done this semester; you can't use results

you have developed in previous semesters.
 Individual or groups of 2 students.
 Deliverables:

 Brief project proposal (1 page) by March 5th in class.
 Midway progress report (5 pages) describing the results of your first experiments by April 9th in

class, worth 20% of the project grade.
 Poster for class poster session on May 1st, 3-6pm in the NSH Atrium, worth 20%.
 Write up (8 pages maximum in NIPS format, including references; this page limit is strict), due May

5th by 3pm by email, worth 60% of the project grade.
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Convex optimization v.
Nonlinear optimization

 Linear optimization problems
 Linear objective, linear constraints
 Efficient solutions!

 Nonlinear optimization
 Either nonlinear constraints or objective
 You will often hear: “problem is nonlinear, no hope to solve it… must use local

search, simulated annealing,…”
 Convex optimization

 Many nonlinear objectives/constraints are convex
 Efficient solutions

 Real question: “convex v. non-convex?”
 Not “linear v. nonlinear?”

 Even if problem is non-convex, convexity is useful:
 Convex relaxations of non-convex problems may have theoretical guarantees
 Can always obtain convex lower bound to non-convex problem

 Duality (always) and relaxation (often)
 Can provide good starting point for local search
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Outline to learning about convexity
 General definition of a convex optimization problem:

 Equivalent problem:

 How we’ll learn about these problems:
1. Convex sets
2. Convex functions
3. Convex optimization problems
4. Duality and convexity
5. Algorithms for optimizing convex problems

 Applications will be discussed along the way
 Today: characterizing convex sets and some interesting examples
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Definitions of convex sets
 Convex v. Non-convex sets

 Line segment definition:

 Convex combination definition:

 Probabilistic interpretation:
 If C ⊆ Rn  is convex
 Define a probability distribution
 Then
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General convex hull
 Given some set C

 Convex hull of C,  conv C

 Properties of convex hull:
 Idempotency:
 Convexity:

 Usefulness:
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Examples of convex sets we
have already seen…
 Rn

 point

 half space

 polyhedron

 line

 line segment

 linear subspace
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First non-linear example:
Euclidean balls and Ellipsoids

 B(xc,r) - ball centered at xc centered at r:

 Convexity:

 Ellipsoid:
 (x-xc)T∑-1(x-xc) ≤ 1
 ∑ is positive semidefinite
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Examples of Norm Balls

L1 norm (absolute)

L1 (max) norm

Scaled Euclidian (L2)

Mahalanobis

10©2008 Carlos Guestrin

Norm balls
 Convexity of norm balls

 Properties of norms:
 Scaling
 Triangle inequality

 Norm balls are extremely important in ML


 What about achieving a norm with equality?
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Cones
 Set C is a cone if set is invariant to non-negative scaling

 If the cone is convex, we call it:
 extremely important in ML (as we’ll see)

 A cool cone:  The ice cream cone
 a.k.a. second order cone
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Positive semidefinite cone
 Positive semidefinite matrices:

 Positive semidefinite cone:

 Alternate definition: Eigenvalues

 Convexity:

 Examples in ML:




 A fundamental convex set
 Useful in a huge number of applications
 Basis for very cool approximation algorithms
 Generalizes pretty many “named” convex optimization problems
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Operations that preserve
convexity 1: Intersection

 Intersection of convex sets is convex

 Examples:
 Polyhedron

 Robust linear regression

 Positive semidefinite cone
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Operations that preserve convexity 2:
Affine functions

 Affine function:  f(x) = Ax + b
 Set S is convex

 Image of S under f is convex

 Translation:

 Scaling:

 General affine transformation:

 Why is ellipsoid convex?
 (x-xc)T∑-1(x-xc) ≤ 1
 ∑ is positive semidefinite
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Operations that preserve convexity 3:
Linear-fractional functions

 Linear fractional functions:


 Closely related to perspective projections (useful in computer vision)

 Given convex set C, image according to linear fractional function:

 Example:
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Separating hyperplane theorem
 Theorem: Every two non-intersecting convex sets C and D have a

separating hyperplane:

 Intuition of proof (for special case)
 Minimum distance between sets:
 If minimum is achieved in the sets (e.g., both sets closed, and one is bounded),

then
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Supporting hyperplane
 General definition: Some set C ⊆ Rn

 Point x0 on boundary
 Boundary is the closure of the set minus its interior

 Supporting hyperplane:
 Geometrically: a tangent at x0
 Half-space contains  C:

 Theorem: for any non-empty convex set C, and any point x0 in the boundary
of C, there exists (at least one) supporting hyperplane at x0

 (One) Converse:  If set C is closed with non-empty interior, and there is a
supporting hyperplane at every boundary point, then C is convex
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What you need to know

 Definitions of convex sets
 Main examples of convex sets

 Proving a set is convex
 Operations that preserve convexity

 There are many many many other operations that
preserve convexity

 See book for several more examples

 Separating and supporting hyperplanes


