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Announcements
"

m  Class project:
Opportunity to explore interesting optimization problem of your choice.

implement and evaluate core optimization techniques.

You should evaluate your approach, preferably on real-world data.
It will be fun!!! :)
m  Fine print:

you have developed in previous semesters.

Individual or groups of 2 students.

Deliverables:
/L = Brief project proposal (1 page) by March 5th in class.

class, worth 20% of the project grade.
= Poster for class poster session on May 1st, 3-6pm in the NSH Atrium, worth 20%.

5th by 3pm by email, worth 60% of the project grade.

©2008 Carlos Guestrin

May involve optimization in some problem in ML, Al or other domain of your interest, or to

= Some ideas in the website.
All projects must have an ithplementation component) though theoretical aspects may also
be explored. -

Class project must be about new things you have done this semester; you can't use results

= Midway progress report (5 pages) describing the results of your first experiments by April 9th in

= Write up (8 pages maximum in NIPS format, including references; this page limit is strict), due May




Convex optimization v.

i} Ngg”gﬁﬁ; thimization

Linear optimization problems

Linear objective, linear constraints

Efficient solutions!
Nonlinear optimization

Either nonlinear constraints or objective

You will often hear: “problem is nonlinear, no hope to solve it
search, simulated annealing,...”

Convex optimization

Many nonlinear objectives/constraints are convex
. v . \
Efficient solutions
Real question: “convex v. non-convex?”
Not “linear v. nonlinear?”

Even if problem is non-convex, convexity is useful:

... must use local

Convex relaxations of non-convex problems may have theoretical guarantees
a——————
Can alyays obtain convex lower bound to non-convex problem
.

L vve] MUMTI A

= Duality (always) and relaxation (often)
Can provide good starting point for local search
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Outline to learning about convexity
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= General definition of a convex optimization problem: ey
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m  Equivalent problem:
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m  How we’ll learn about these problems:

Convex sets
Convex functions
Convex optimization problems
Duality and convexity
uality and €0
Algorithms for optimizing convex problems
Applications will be discussed along the way

Today: characterizing convex sets and some interesting examples
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Definitions of convex sets
" J

m Convex v. Non- convex sets
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m Line segment definition: A+ X,
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m Convex combination definition:
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= Probabilistic interpretation:
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If C = R" is convex
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General convex hull
" JEE

m Given some set C w

m Convex hull of C, conv C

conv(( Z {)(\ﬂ Xi?aly}/ %:eCI 6(7,612"@:;1‘(

m Properties of convex hull:
Idempotency: C € enwex cenvC = C

Convexity:
VR

, Coqavl = Convieov O

s Usefulness: obbun o oWt e_%ff;: d on . n';\("\cwm‘
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Examples of convex sets we

. Baxgalieady seen. .

m R

m half space

P—

= polyhedron )@

m line

m line segment —_

m linear subspace . \ Ay =5
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First non-linear example:

. guclidean balls and Ellipsoids

m B(x,r) - ball centered at x, centered at r: o
B&e,r) = §x | IX~%clh < ¥

= x| Ve s vy
m Convexity:
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Examples of Norm Balls

Scaled Euclidian (L,)

L, norm (absolute)

|

Loo (max) norm
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Mahalanobis

Norm balls
= JEE

m Convexity of norm balls
Properties of norms:

= Scaling
= Triangle inequality

m  Norm balls are extremely important in ML

m  What about achieving a norm with equality?
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Cones
" J

m Set Cis a cone if set is invariant to non-negative scaling

m If the cone is convex, we call it:
extremely important in ML (as we’ll see)

m A cool cone: The ice cream cone
a.k.a. second order cone
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Positive semidefinite cone
= JEE

m Positive semidefinite matrices:

m  Positive semidefinite cone:

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

= Alternate definition: Eigenvalues

m  Convexity:
Ly
X
Yy =z

m  Examples in ML:

m A fundamental convex set
Useful in a huge number of applications
Basis for very cool approximation algorithms

Generalizes pretty many “named” convex optimization problems
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Operations that preserve

_ M Intersection

m Intersection of convex sets is convex

m Examples:
Polyhedron

Robust linear regression

Positive semidefinite cone
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Operations that preserve convexity 2:
Affine functions
= JEE

m Affine function: f(x) = Ax+b
m  Set Sis convex

Image of S under f is convex
m  Translation:
m  Scaling:
m  General affine transformation:
m  Why is ellipsoid convex?

(X_XC)TZ-1 (X_Xc) <1
> is positive semidefinite
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Operations that preserve convexity 3:
Linear-fractional functions
"

m Linear fractional functions:

Closely related to perspective projections (useful in computer vision)

m Given convex set C, image according to linear fractional function:

m Example:
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Separating hyperplane theorem
"
m Theorem: Every two non-intersecting convex sets C and D have a
separating hyperplane:

m Intuition of proof (for special case)
Minimum distance between sets:

If minimum is achieved in the sets (e.g., both sets closed, and one is bounded),
then
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Supporting hyperplane
* J

m  General definition: Some set C < R"
Point x, on boundary
= Boundary is the closure of the set minus its interior
Supporting hyperplane:
= Geometrically: a tangent at x,
= Half-space contains C:

m Theorem: for any non-empty convex set C, and any point x, in the boundary
of C, there exists (at least one) supporting hyperplane at x,

m (One) Converse: If set C is closed with non-empty interior, and there is a
supporting hyperplane at every boundary point, then C is convex
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What you need to know
* J
m Definitions of convex sets
Main examples of convex sets
m Proving a set is convex

m Operations that preserve convexity

There are many many many other operations that
preserve convexity
= See book for several more examples

m Separating and supporting hyperplanes
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