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Announcements
Class project:

Opportunity to explore interesting optimization problem of your choice. 
May involve optimization in some problem in ML, AI or other domain of your interest, or to 
implement and evaluate core optimization techniques. 

Some ideas in the website. 
All projects must have an implementation component, though theoretical aspects may also 
be explored. 
You should evaluate your approach, preferably on real-world data.
It will be fun!!! :)

Fine print:
Class project must be about new things you have done this semester; you can't use results 
you have developed in previous semesters. 
Individual or groups of 2 students. 
Deliverables:

Brief project proposal (1 page) by March 5th in class.
Midway progress report (5 pages) describing the results of your first experiments by April 9th in 
class, worth 20% of the project grade. 
Poster for class poster session on May 1st, 3-6pm in the NSH Atrium, worth 20%.
Write up (8 pages maximum in NIPS format, including references; this page limit is strict), due May 
5th by 3pm by email, worth 60% of the project grade.
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Convex optimization v. 
Nonlinear optimization
Linear optimization problems

Linear objective, linear constraints
Efficient solutions!

Nonlinear optimization
Either nonlinear constraints or objective
You will often hear: “problem is nonlinear, no hope to solve it… must use local 
search, simulated annealing,…”

Convex optimization
Many nonlinear objectives/constraints are convex
Efficient solutions

Real question: “convex v. non-convex?”
Not “linear v. nonlinear?”

Even if problem is non-convex, convexity is useful:
Convex relaxations of non-convex problems may have theoretical guarantees
Can always obtain convex lower bound to non-convex problem

Duality (always) and relaxation (often)
Can provide good starting point for local search 
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Outline to learning about convexity
General definition of a convex optimization problem:

Equivalent problem:

How we’ll learn about these problems:
1. Convex sets
2. Convex functions
3. Convex optimization problems
4. Duality and convexity
5. Algorithms for optimizing convex problems
Applications will be discussed along the way
Today: characterizing convex sets and some interesting examples
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Definitions of convex sets
Convex v. Non-convex sets

Line segment definition:

Convex combination definition:

Probabilistic interpretation:
If C ⊆ Rn is convex
Define a probability distribution
Then
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General convex hull
Given some set C

Convex hull of C,  conv C

Properties of convex hull:
Idempotency:
Convexity:

Usefulness:
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Examples of convex sets we 
have already seen…

Rn

point

half space

polyhedron

line

line segment

linear subspace
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First non-linear example: 
Euclidean balls and Ellipsoids
B(xc,r) - ball centered at xc centered at r:

Convexity:

Ellipsoid:
(x-xc)T∑-1(x-xc) ≤ 1
∑ is positive semidefinite
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Examples of Norm Balls

L1 norm (absolute)

L∞ (max) norm

Scaled Euclidian (L2)

Mahalanobis
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Norm balls
Convexity of norm balls

Properties of norms:
Scaling
Triangle inequality

Norm balls are extremely important in ML

What about achieving a norm with equality?
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Cones
Set C is a cone if set is invariant to non-negative scaling 

If the cone is convex, we call it: 
extremely important in ML (as we’ll see)

A cool cone:  The ice cream cone
a.k.a. second order cone
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Positive semidefinite cone
Positive semidefinite matrices:

Positive semidefinite cone:

Alternate definition: Eigenvalues

Convexity:

Examples in ML:

A fundamental convex set 
Useful in a huge number of applications
Basis for very cool approximation algorithms
Generalizes pretty many “named” convex optimization problems 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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Operations that preserve 
convexity 1: Intersection
Intersection of convex sets is convex

Examples:
Polyhedron

Robust linear regression

Positive semidefinite cone
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Operations that preserve convexity 2: 
Affine functions

Affine function:  f(x) = Ax + b
Set S is convex

Image of S under f is convex

Translation:

Scaling:

General affine transformation: 

Why is ellipsoid convex?
(x-xc)T∑-1(x-xc) ≤ 1
∑ is positive semidefinite
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Operations that preserve convexity 3: 
Linear-fractional functions

Linear fractional functions:

Closely related to perspective projections (useful in computer vision)

Given convex set C, image according to linear fractional function:

Example:
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Separating hyperplane theorem
Theorem: Every two non-intersecting convex sets C and D have a 
separating hyperplane:

Intuition of proof (for special case)
Minimum distance between sets:
If minimum is achieved in the sets (e.g., both sets closed, and one is bounded), 
then
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Supporting hyperplane
General definition: Some set C ⊆ Rn

Point x0 on boundary
Boundary is the closure of the set minus its interior

Supporting hyperplane:
Geometrically: a tangent at x0
Half-space contains C:

Theorem: for any non-empty convex set C, and any point x0 in the boundary 
of C, there exists (at least one) supporting hyperplane at x0

(One) Converse:  If set C is closed with non-empty interior, and there is a 
supporting hyperplane at every boundary point, then C is convex
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What you need to know

Definitions of convex sets
Main examples of convex sets

Proving a set is convex
Operations that preserve convexity

There are many many many other operations that 
preserve convexity

See book for several more examples

Separating and supporting hyperplanes


