Convex Functions (cont. 2)

Optimization - 10725

Carlos Guestrin

Carnegie Mellon University

March 5th, 2008

Convex Functions

- Function f:Rⁿ→R is convex if

 $f(\theta x + (1-\theta)y) \leq \Theta f(x) + (1-\theta)f(y)$

Generalization: Jensen's inequality:

• Strictly convex function:
$$e.g.$$
, $for the convex function: $f(\theta x) = f(x) + f(x) +$$

Operations that preserve convexity

- Many operations preserve convexity
 - Knowing them will make your life much easier when you want to show that something is convex
 - Examples in next few slides
- Simplest: Non-negative weighted sum:
 - □ f= Zw;f; w;>0
 - ☐ If all f's are convex, then f is (~ ∨ ★
 - If all fi's are concave, then f is
 - Example: integral of f(x,y)
- Affine mapping: f:Rⁿ→R, A∈R^{nxm}, b∈R^m
 - \Box g(x) = f(Ax+b)
 - □ dom g = { X | Ax +b ∈ dom f } + Glwags convex if

 □ If f is convex, then g is convex
 □ If f is concave, then g is convex

$$g(x) = \int_{y \in C} f(x,y) dy$$

Pointwise maximum and

- Piecewise linear convex functions:
 - Fundamental for POMDPs

- For x in a convex set C, sum of the r largest elements:

Sort x, pick r largest components, sum them:
$$f(\chi) = \{\xi \mid \chi_{i} \mid \chi_{$$

Maximum eigenvalue of symmetric matrix X∈R^{nxn}, f:R^{nxn}→R

Pointwise maximum of affine functions: general representation

- We saw: convex set can be written as intersection of (infinitely many) hyperplanes:
 - □ C convex, then

- Convex functions can be written as supremum of (infinitely many) lower bounding hyperplanes:
 - □ f convex function, then

Composition: scalar differentiable, real domain case

- How do I prove convexity of log-sum-exp-positive-weighted-sum-monomials? :)
- If h:R^k→R and g:Rⁿ→R^k, when is f(x) = h(g(x)) convex (concave)?
 - □ **dom** $f = \{x \in \text{dom } g | g(x) \in \text{dom } h\}$
- Simple case: h:R→R and g:Rⁿ→R, dom g = dom h = R, g and h differentiable
 - \Box E.g., $g(x)=x^T\sum x$, $\sum psd$, $h(y)=e^y$
- Second derivative:

- \Box f''(x) = h''(g(x))g'(x)² + h'(g(x))g''(x)
 - When is $f''(x) \ge 0$ (or $f''(x) \le 0$) for all x?
- Example of sufficient (but not necessary) conditions:
 - □ f convex if h is convex and nondecreasing and g is convex
 - f convex if h is convex and nonincreasing and g is concave
 - □ f concave if h is concave and nondecreasing and g is concave
 - ☐ f concave if h is concave and nonincreasing and g is convex

Composition: scalar, general case

- If h:R^k \rightarrow R and g:Rⁿ \rightarrow R^k, when is f(x) = h(g(x)) convex (concave)?
 - □ dom f = $\{x \in \text{dom } g | g(x) \in \text{dom } h\}$
 - Simple case: h:R→R and g:Rⁿ→R, general domain and non-differentiable
 - Example of sufficient (but not necessary) conditions:
 - f convex if h is convex and h nondecreasing and g is convex
 - f convex if h is convex and h nonincreasing and g is concave
 - f concave if h is concave and h nondecreasing and g is concave
 - f concave if h is concave and h nonincreasing and g is convex
 - nondecreasing or nonincreasing condition on extend value extension of h is fundamental
 - counter example in the book if nondecreasing property holds for h but not for h, the composition no longer convex
 - □ If $h(x)=x^{3/2}$ with **dom** $h = R_+$, convex but extension is not nondecreasing
 - □ If $h(x)=x^{3/2}$ for $x\ge 0$, and h(x)=0 for x<0, **dom** h=R, convex and extension is nondecreasing

Vector composition: differentiable

- If h:R^k→R and g:Rⁿ→R^k, when is f(x) = h(g(x)) convex (concave)?
 - □ **dom** f = { $x \in \text{dom } g | g(x) \in \text{dom } h$ }
- Focus on $f(x) = h(g(x)) = h(g_1(x), g_2(x), ..., g_k(x))$
- Second derivative:
 - \Box f''(x) = g'(x)^T $\nabla^2 h(g(x))g'(x) + \nabla h(g(x)) g''(x)$
 - When is $f''(x) \ge 0$ (or $f''(x) \le 0$) for all x?
- Example of sufficient (but not necessary) conditions:
 - □ f convex if h is convex and nondecreasing in each argument, and g_i are convex
 - \Box f convex if h is convex and nonincreasing in each argument, and g_i are concave
 - □ f concave if h is concave and nondecreasing in each argument, and g_i are concave
 - $\hfill \square$ \hfill f concave if h is concave and nonincreasing in each argument, and g_i are convex
- Back to log-sum-exp-positive-weighted-sum-monomials

- □ **dom** f = R_{++}^n , $c_i > 0$, $a_i \ge 1$
- □ log sum exp convex

Minimization

• If f(x,y) is convex in (x,y) and C is a convex set, then:

- Norm is convex: ||x-y||
 - □ minimum distance to a set C is convex:

Perspective function

- If f is convex (concave), then the perspective of f is convex (concave):
 - \Box t>0, g(x,t) = t f(x/t)
- KL divergence:
 - \Box f(x) = -log x is convex
 - □ Take the perspective:
 - \Box Sum over many pairs (x_i,t_i)

Quasiconvex functions

Unimodal functions are not always convex

- But they are (usually) still easy to optimize: Quasiconvex function:
 - □ All sublevel sets are convex, for all $\alpha \in \mathbb{R}$:

Equivalent definition: max of extremes is higher than function

■ Applications include computer vision (geometric reconstruction) [Ke & Kanade '05]

Log-convex functions

- Function $f:R^n \rightarrow R$, with f(x)>0 in all (convex) **dom** f
 - □ f log-convex if and only if:
- Or equivalently:

Examples

What should you know: Convex fns

- definition
- showing that a function is convex/concave
 - ☐ first principle
 - ☐ first and second order condition
 - epigraph
 - operations that preserve convexity
- quasiconvexity
- log-convexity