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Convex Functions
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Operations that preserve convexity
" S

=  Many operations preserve convexity

Knowing them will make your life much easier when you want to show that something is
convex —

Examples in next few slides

= Simplest: Non-negative weighted sum:
= 2w ik Wig©

If all f's are convex, then fis Con~vex

If all f’s are concave, then fis ¢4 se o > Conutx
_ | F Gy A
Example: integral of f(x,y) (o UL ,\({% , %C?d SL& ‘c to‘ﬂ ‘3

m Affine magging: f:R"=»R, A&R™M beR™

g(x) = f(Ax+b) — e‘ﬁ', ’4‘:5 Ca”"\{’"”\ P(A

dom g = i% \ Ax th € /(o-»\{—ge, Ct(oum)g conax (5
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If f is concave, then c] 1S ConCeL
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Pointwise maximum and

m [ff’'s are convex, then
‘P(%): e £ 6(3
m Piecewise linear convex functions:
Fundamental for POMDPs
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m For xina convex set C, sum of the r largest elements:
Sort x, pick r largest components, sum them: ~{= X
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Pointwise maximum of affine

. functions: general representation

m  \We saw: convex set can be written as intersection of (infinitely many) hyperplanes:
C convex, then

m Convex functions can be written as supremum of (infinitely many) lower bounding
hyperplanes:

f convex function, then
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Composition: scalar differentiable,

. Lgaldomain case

m  How do | prove convexity of log-sum-exp-positive-weighted-sum-monomials? :)

m If h:Rk=>»R and g:R"=>R¥, when is f(x) = h(g(x)) convex (concave)?
dom f = {x € dom g| g(x) € dom h}

m  Simple case: h:R=R and g:R"2R, dom g = dom h = R, g and h differentiable
E.g., g(x)=x"3X, 3 psd, h(y) = e¥
m Second derivative:

f’(x) = h"(g(x))g'(x)* + h'(g(x))g"(x)
»  When is f’(x)20 (or f’(x)<0) for all x?

m  Example of sufficient (but not necessary) conditions:
f convex if h is convex and nondecreasing and g is convex
f convex if h is convex and nonincreasing and g is concave
f concave if h is concave and nondecreasing and g is concave
f concave if h is concave and nonincreasing and g is convex
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Composition: scalar, general case
"

m If h:Rk=»R and g:R"=>R¥, when is f(x) = h(g(x)) convex (concave)?
dom f = {x € dom g| g(x) € dom h}

m  Simple case: h:R=R and g:R"=R, general domain and non-differentiable

Example of sufficient (but not necessary) conditions:
= fconvex if his convex and h nondecreasing and g is convex
= fconvex if h is convex and h nonincreasing and g is concave
= fconcave if h is concave and h nondecreasing and g is concave
= fconcave if h is concave and h nonincreasing and g is convex

m nondecreasing or nonincreasing condition on extend value extension of h is fundamental

counter example in the book if nondecreasing property holds for h but not for h, the composition no
longer convex

If h(x)=x32 with dom h = R_, convex but extension is not nondecreasing

If h(x)=x32 for x=20, and h(x)=0 for x<0, dom h = R, convex and extension is nondecreasing
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Vector composition: differentiable
" I

m If h:R*=»R and g:R"=R¥, when is f(x) = h(g(x)) convex (concave)?
dom f = {x € dom g| g(x) € dom h}

m  Focus on f(x) = h(g(x)) = h(g,(x), 9,(X),..., 9,(X))

m  Second derivative:
f’(x) = g’'(x)T V=h(g(x))g'(x) + Vh(g(x)) g"(x)

»  When is f’(x)20 (or f’(x)<0) for all x?

m  Example of sufficient (but not necessary) conditions:
f convex if h is convex and nondecreasing in each argument, and g, are convex
f convex if h is convex and nonincreasing in each argument, and g, are concave
f concave if h is concave and nondecreasing in each argument, and g, are concave
f concave if h is concave and nonincreasing in each argument, and g, are convex

m Back to log-sum-exp-positive-weighted-sum-monomials
domf=R",,, ¢>0, a1

log sum exp convex
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Minimization

m If f(x,y) is convexin (x,y) and C is a convex set, then:

m Norm is convex: ||x-y||
minimum distance to a set C is convex:
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Perspective function
"

m |[f fis convex (concave), then the perspective of f is convex (concave):
t>0, g(x,t) =t f(x/t)

m KL divergence:
f(x) = -log x is convex

Take the perspective:

Sum over many pairs (x;,t:)

©2008 Carlos Guestrin

10



Quasiconvex functions
»

m Unimodal functions are not always convex

m But they are (usually) still easy to optimize: Quasiconvex function:
All sublevel sets are convex, for all aeR:

m Equivalent definition: max of extremes is higher than function

m Applications include computer vision (geometric reconstruction) ke & kanade '05]

©2008 Carlos Guestrin 11



Log-convex functions
" I

m Function f:R"=>»R, with f(x)>0 in all (convex) dom f
f log-convex if and only if:

m  Or equivalently:

m Examples

- 1 1 T —1
Gaussian f(z) = o~ 3(@—p) T @—p)
/(@) (2m)"detX
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What should you know: Convex fns
-
m definition

m showing that a function is convex/concave
first principle
first and second order condition
epigraph
operations that preserve convexity
m quasiconvexity

m |og-convexity
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