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Convex Functions

 Function f:RnR is convex if
 Domain is convex


 Generalization: Jensen’s inequality:

 Strictly convex function:



3©2008 Carlos Guestrin

Operations that preserve convexity
 Many operations preserve convexity

 Knowing them will make your life much easier when you want to show that something is
convex

 Examples in next few slides

 Simplest: Non-negative weighted sum:


 If all fi’s are convex, then f is
 If all fi’s are concave, then f is

 Example: integral of f(x,y)

 Affine mapping: f:RnR, A∈Rnxm, b∈Rm

 g(x) = f(Ax+b)

 dom g =

 If f is convex, then
 If f is concave, then
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Pointwise maximum and
supremum

 If fi’s are convex, then

 Piecewise linear convex functions:
 Fundamental for POMDPs

 For x in a convex set C, sum of the r largest elements:
 Sort x, pick r largest components, sum them:

 Maximum eigenvalue of symmetric matrix X∈Rnxn, f:RnxnR
 f(X) =
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Pointwise maximum of affine
functions: general representation

 We saw: convex set can be written as intersection of (infinitely many) hyperplanes:
 C convex, then

 Convex functions can be written as supremum of (infinitely many) lower bounding
hyperplanes:
 f convex function, then

Discussion on this slide subject to mild conditions on sets and functions, see book
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Composition: scalar differentiable,
real domain case

 How do I prove convexity of log-sum-exp-positive-weighted-sum-monomials? :)


 If h:RkR and g:RnRk, when is f(x) = h(g(x)) convex (concave)?
 dom f = {x ∈ dom g| g(x) ∈ dom h}

 Simple case: h:RR and g:RnR, dom g = dom h = R, g and h differentiable
 E.g., g(x)=xT∑x, ∑ psd, h(y) = ey

 Second derivative:
 f’’(x) = h’’(g(x))g’(x)2 + h’(g(x))g’’(x)

 When is f’’(x)≥0 (or f’’(x)≤0) for all x?

 Example of sufficient (but not necessary) conditions:
 f convex if h is convex and nondecreasing and g is convex
 f convex if h is convex and nonincreasing and g is concave
 f concave if h is concave and nondecreasing and g is concave
 f concave if h is concave and nonincreasing and g is convex
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Composition: scalar, general case
 If h:RkR and g:RnRk, when is f(x) = h(g(x)) convex (concave)?

 dom f = {x ∈ dom g| g(x) ∈ dom h}

 Simple case: h:RR and g:RnR, general domain and non-differentiable
 Example of sufficient (but not necessary) conditions:

 f convex if h is convex and h nondecreasing and g is convex
 f convex if h is convex and h nonincreasing and g is concave
 f concave if h is concave and h nondecreasing and g is concave
 f concave if h is concave and h nonincreasing and g is convex

 nondecreasing or nonincreasing condition on extend value extension of h is fundamental
 counter example in the book if nondecreasing property holds for h but not for h, the composition no

longer convex

 If h(x)=x3/2 with dom h = R+, convex but extension is not nondecreasing

 If h(x)=x3/2 for x≥0, and h(x)=0 for x<0, dom h = R, convex and extension is nondecreasing

~
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Vector composition: differentiable
 If h:RkR and g:RnRk, when is f(x) = h(g(x)) convex (concave)?

 dom f = {x ∈ dom g| g(x) ∈ dom h}
 Focus on f(x) = h(g(x)) = h(g1(x), g2(x),…, gk(x))

 Second derivative:
 f’’(x) = g’(x)T ∇2h(g(x))g’(x) + ∇h(g(x)) g’’(x)

 When is f’’(x)≥0 (or f’’(x)≤0) for all x?

 Example of sufficient (but not necessary) conditions:
 f convex if h is convex and nondecreasing in each argument, and gi are convex
 f convex if h is convex and nonincreasing in each argument, and gi are concave
 f concave if h is concave and nondecreasing in each argument, and gi are concave
 f concave if h is concave and nonincreasing in each argument, and gi are convex

 Back to log-sum-exp-positive-weighted-sum-monomials


 dom f = Rn
++ , ci>0, ai≥1

 log sum exp convex
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Minimization

 If f(x,y) is convex in (x,y) and C is a convex set, then:

 Norm is convex: ||x-y||
 minimum distance to a set C is convex:
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Perspective function

 If f is convex (concave), then the perspective of f is convex (concave):
 t>0,  g(x,t) = t f(x/t)

 KL divergence:
 f(x) = -log x is convex

 Take the perspective:

 Sum over many pairs (xi,ti)
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Quasiconvex functions

 Unimodal functions are not always convex

 But they are (usually) still easy to optimize:  Quasiconvex function:
 All sublevel sets are convex, for all α∈R:

 Equivalent definition: max of extremes is higher than function

 Applications include computer vision (geometric reconstruction) [Ke & Kanade ‘05]
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Log-convex functions

 Function f:RnR, with f(x)>0 in all (convex) dom f
 f log-convex if and only if:

 Or equivalently:

 Examples
 Gaussian
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What should you know: Convex fns

 definition
 showing that a function is convex/concave

 first principle
 first and second order condition
 epigraph
 operations that preserve convexity

 quasiconvexity
 log-convexity


