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Operations that preserve convexity

= Many operations preserve convexity

Knowing them will make your life much easier when you want to show that something is
bbb
convex pr—

Examples in next few slides

m  Simplest: Non-negative weighted sum:
T f= 2wk wip©

If all f’s are convex, then fis Cenvex

If all s are concave, then fis s e o Conuex
- (L) A
Example: integral of f(x,y) (o (L '\(1‘3 , %(}0 - S%) é’i l",)\ ‘3
= Affine mapping: :R"PR, AcR™™, beR™ .
9(x) = f(Ax+b) - €9, A5 o fom Pla
e —

o= [ At € Aomfle alimy coman i€

If f is convex, then 3 'S conv Lk &OM F Lo
If f is concave, then c] is ConCet
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Pointwise maxn“Qum and
FX) =Y mthh
N

= Iff’s are convex, then
‘F(ﬁF m°\>( £ 6‘3
m  Piecewise linear convex functions:
Fundamental for POMDPs
PR

m  For xin a convex set C, sum of the r largest elements:
Sortx pick r largest components, sum them: ’p&\ - ﬁ{ \
, , : =~ p
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f(X) = M”t»( N AR /a

=1 et & '
R N S S S b
}\M‘L /

©2008 Carlos Guestrin 4




Pointwise maximum of affine

. Jugctions: general representation

m  We saw: convex set can be written as intersection of (infinitely many) hyperplanes:
C convex, then

C = _/\(o\?me,; 2,6

m  Convex functions can be written as supremum of (infinitely many)ower bounding
hyperplanes:
f convex function, then

—C(sé\ T max a; X +b,

ol ( tn V‘Y
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Composition: scalar differentiable,

(eal domain case - (1)1

= How do | prove convexity of log-sum-exp- pogltwe-welghted -sum-monomials? :)
Gy X Cij>o
fo) = lgT N

71
= If h:Rk>R and g:R">RK, when is f(x) = h(g(x)) convex (concave)? »a 7
dom_f_= {X e dom g| g(x) € dom h} -

—_—

= Simple case: h:R»Rand g: R"-)R domg= dom h and h differentiable
E.g. gX)=x3x, 3 psd, hy) = F&N = ©29 e 15 Hhig Connx )
= Second derivative: cr
F'(x) = h"(g(x))g’(¥)2 + W'(g(x))g"(x) Lv I\M s 60 70 W
= When is f’(x)20 (or f’(x)<0) for all x? 2. ﬂ h’ (%u)) 7/0 l\ S conety
) 1

4., W' (964) 1”00 ’ 9 convts , ‘\(160

m  Example of sufficient (but not necessary) conditions: }L IS L
f convex if h is convex and nondecreasing and g is convex 'Lp,,,fqu .
f convex if h is convex and nonincreasing and g is concave v/
f concave if h is concave and nondecreasing and g is concave
f concave if h is concave and nonincreasing and g is convex
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Composition: scalar, general case
" JE

= If h:Rk»R and g:R">RK, when is f(x) = h(g(x)) convex (concave)?

n,
dom f={x e dom g| g(x) € dom h} 'ﬂLD(I\Cﬂ
Aom S At R
m  Simple case: h:R<2R and g:R"R, general domain and non-differentiable C R\

Example of sufficient (but ni necessary) conditions: ~ L\
= fconvexif h is convex an ondecreasing and g is convex 6(') - ()() ({_ X éV{A\I\

= fconvex if h is convex and h nonincreasing and g is concave

= fconcave if h is concave and h nondecreasing and g is concave o F
= fconcave if h is concave and h nonincreasing and g is convex / X % 7 A
conveX
ceSL

m nondecreasing or nonincreasing condition on extend value extension of h is fundamental

wm the book if nondecreasing property holds for h but not fgé h, the composition no
Ionger convex

—_—
p—

If h(x)=x¥2 with dom h = R,, convex but extension ig not nondecreasing

KeO=qys 27e
a8 , X <0
If h(x)=x%2 for x20, and h(x)=0 for x<0, dom h =R, convex and extension is nondecreasing
= —_— —_
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Vector composition: differentiable

= [fh:R*DR and g:R"DRK, when is f(x) = h(g(x)) convex (concave)? F6) %o
domf={x edomglgx) edomh} ~———— o 9, PR Convty Canvex

= Focus on f(x) = h(g(x)) = h(g;(X), G(X)..... 9(x))

m  Second derivative:
'(x) = g'(x)" V2h(g(x))g'(x) + Vh(g(x)) g"(x)

= When is f’(x)20 (or f’(x)<0) for all x?

D 0 , brcacase WG{\\]‘O
A “

m  Example of sufficient (but not necessary) conditions:
f convex if h is convex and nondecreasing in each argument, and g, are convex
f convex if h is convex and nonincreasing in each argument, and g, are concave
f concave if h is concave and nondecreasing in each argument, and g; are concave
f concave if h is concave and nonincreasing in each argument, and g, are convex
m Backto Iog—sum-exp-posjtzive-weé‘ighted-sum-monomials
Fx) = w7 @ TCIxM
dom f=R",,, c0, ap1
++ \? LF . / NG ALCV‘,{Q_S,"&
Q,(l ( 1 Lo-cA j
" “\VDLN,.%/ ]

log sum exp convex hy)= log '};
OL-'& 1 avex
R AR LA e O
3 = LS ) Convay [PISINR Jum
8 (X '\){ ) X (OF Cot\\m,(,ﬁg
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Minimization
" J

m [f f(x,y) is convex in (x,y) and C is a convex set, then:

s @ I =i F)

: ~ X

— > (*x-4) = (

= Norm is convex: ||x-y||€~ J A 9
minimum distance to a set C is convex:

J()( C - M) {[>(—- o
Y e YeC o o Ao —"C

conviy

©2008 Carlos Guestrin

kL (P”%_l = E PEx) Icﬁps()

Perspective function - TP 15769
"

m If fis convex (concave), then the pew f is convex (concave):
0, g(xt) = tf(xit) COmnpde = \WiShm

foonvin X, § 1S camvex n S0TA X L

m KL divergence:
f(x) = -log x is convex

Take the perspective: S(KIH - - ¢ Iog%_ - H"j)( 4 {‘loi-é

Sum over many pairs () l\()\)—'[) =7 %(X\,—E'\)

K\ divegu & =Z2¢ byt /_Z £ log X;
Comvlt Tn (O % \ \ ' '
TRy

©2008 Carlos Guestrin 10




. . O Phoize Lin A Sowllst
Quasiconvex functions t &« #¢
" J

m Unimodal functions are not always convex T
/\/—\

r\d‘l‘ ol O, Conca.
Pl Concacy

m But they are (usually) still easy to optimize: Quasicon@ex function:

All sublevel sets are convex, for all a.cR: .—’_‘PC::’*'!’—> X
' d( -
50(,1 {XI ﬁ(x)éfs PN 2
m Equivalent definition: max of extremes is higher than function
Convey, e §t ComvtX
flox50-0) < etk +(1-0) £y) p(9x+([fa)ngmux(£aq,,ﬁ(?,)

m Applications include computer vision (geometric reconstruction) (e & kanade ‘0]
——

—_—

©2008 Carlos Guestrin 11

Log-convex functions

"
m Function f.R">R, with f(x)>0 in all (convex) dom f
f log-convex if and only if:

log £ (6% +(-6)y) £ blg £6<) + (1-e) lag Fg)

m  Or equivalently:

ECot«10)3) < £6)* £0y) ()

m Examples 1 A
i (1) = — 4 z—p)TE (z—p) (&)
Gaussian f(x) NeoRToh Ca
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What should you know: Convex fns
=
m definition
m showing that a function is convex/concave
first principle
first and second order condition
epigraph
operations that preserve convexity

m quasiconvexity
m |log-convexity
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