Convex Functions

Function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if:
- Domain is convex
- $\forall x, y \in \text{dom } f, \ \theta \in [0, 1]$
 $$f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y)$$

Generalization: Jensen's inequality:
- Useful in ML
 $$E[f(x)] \geq f(E[x])$$

Strictly convex function:
- $\forall x, y \in \text{dom } f, \ \theta \in (0, 1)$
 $$f(\theta x + (1-\theta)y) < \theta f(x) + (1-\theta)f(y)$$
Operations that preserve convexity

- Many operations preserve convexity
 - Knowing them will make your life much easier when you want to show that something is convex
 - Examples in next few slides

- Simplest: Non-negative weighted sum:
 - $f = \sum w_i f_i \geq 0$
 - If all f_i's are convex, then f is convex
 - If all f_i's are concave, then f is concave
 - Example: integral of $f(x,y)$
 $$g(x) = \int_{y \in C} f(x,y) \, dy$$
 e.g., A, b come from PC

- Affine mapping: $f: \mathbb{R}^n \rightarrow \mathbb{R}$, $A \in \mathbb{R}^{nxm}$, $b \in \mathbb{R}^m$
 - $g(x) = f(Ax+b)$
 - $\text{dom } g = \{ x \mid Ax+b \in \text{dom } f \}$
 - Always convex if g is convex and $\text{dom } f$ convex

Pointwise maximum and supremum

- If f_i's are convex, then
 $$f(x) = \max_i f_i(x)$$
- Piecewise linear convex functions:
 - Fundamental for POMDPs

- For x in a convex set C, sum of the r largest elements:
 - Sort x, pick r largest components, sum them:
 $$f(x) = \sum_{i=1}^{r} x_i$$
 $$\max \left\{ \sum_{i=1}^{r} x_i \right\}$$

- Maximum eigenvalue of symmetric matrix $X \in \mathbb{R}^{nxn}$, $f: \mathbb{R}^{nxn} \rightarrow \mathbb{R}$
 - $f(X) = \max \left\{ \sum_{i=1}^{n} x_i \right\}$
 - Linear function of X
 - λ_{max}
Pointwise maximum of affine functions: general representation

We saw: convex set can be written as intersection of (infinitely many) hyperplanes:
- \(C \) convex, then
 \[C = \bigcap_i (a_i^T x + b_i \geq 0) \]

Convex functions can be written as supremum of (infinitely many) lower bounding hyperplanes:
- \(f \) convex function, then
 \[f(x) = \max_i a_i^T x + b_i \]

Discussion on this slide subject to mild conditions on sets and functions, see book.

Composition: scalar differentiable, real domain case

How do I prove convexity of log-sum-exp-positive-weighted-sum-monomials? :)
- \(f(x) = \log \sum_i e^{c_i^T x + d_i} \)
- If \(h: \mathbb{R}^k \to \mathbb{R} \) and \(g: \mathbb{R}^n \to \mathbb{R}^k \), when is \(f(x) = h(g(x)) \) convex (concave)?
 - \(\text{dom } f = \{ x \in \text{dom } g \mid g(x) \in \text{dom } h \} \)

Simple case: \(h: \mathbb{R} \to \mathbb{R} \) and \(g: \mathbb{R}^n \to \mathbb{R} \), \(\text{dom } g = \text{dom } h = \mathbb{R} \), \(g \) and \(h \) differentiable
 - E.g., \(g(x) = x^T \sum x, \sum \text{psd}, h(y) = e^y \)

Second derivative:
- \(f''(x) = h''(g(x)) g'(x)^2 + h'(g(x)) g''(x) \)
 - When is \(f''(x) \geq 0 \) (or \(f''(x) \leq 0 \)) for all \(x \)?

Example of sufficient (but not necessary) conditions:
- \(f \) convex if \(h \) is convex and nondecreasing and \(g \) is convex
- \(f \) convex if \(h \) is convex and nonincreasing and \(g \) is concave
- \(f \) concave if \(h \) is concave and nondecreasing and \(g \) is concave
- \(f \) concave if \(h \) is concave and nonincreasing and \(g \) is convex
Composition: scalar, general case

If $h: \mathbb{R}^k \rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}^k$, when is $f(x) = h(g(x))$ convex (concave)?

- $\text{dom } f = \{x \in \text{dom } g \mid g(x) \in \text{dom } h\}$

Simple case: $h: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$, general domain and non-differentiable

- Example of sufficient (but not necessary) conditions:
 - f convex if h is convex and g is nondecreasing
 - f convex if h is convex and g is nonincreasing and g is concave
 - f concave if h is concave and h nondecreasing and g is concave
 - f concave if h is concave and h nonincreasing and g is convex

- nondecreasing or nonincreasing condition on extend value extension of h is fundamental

 - counter example in the book if nondecreasing property holds for h but not for \tilde{h}, the composition no longer convex

- If $h(x) = x^p$ with $\text{dom } h = \mathbb{R}^+$, convex but extension is not nondecreasing

 - $\tilde{h}(x) = \begin{cases} x^{1/2} & x > 0 \\ \infty & x < 0 \end{cases}$

- If $h(x) = x^p$ for $x \geq 0$, and $h(x) = 0$ for $x < 0$, $\text{dom } h = \mathbb{R}$, convex and extension is nondecreasing

Vector composition: differentiable

If $h: \mathbb{R}^k \rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}^k$, when is $f(x) = h(g(x))$ convex (concave)?

- $\text{dom } f = \{x \in \text{dom } g \mid g(x) \in \text{dom } h\}$

Focus on $f(x) = h(g(x)) = h(g_1(x), g_2(x), \ldots, g_k(x))$

Second derivative:

- $f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x)) g''(x)$

 - When is $f''(x) \geq 0$ (or $f''(x) \leq 0$) for all x?

Example of sufficient (but not necessary) conditions:

- f convex if h is convex and nondecreasing in each argument, and g_i are convex
- f convex if h is convex and nonincreasing in each argument, and g_i are concave
- f concave if h is concave and nondecreasing in each argument, and g_i are concave
- f concave if h is concave and nonincreasing in each argument, and g_i are convex

Back to log-sum-exp-positive-weighted-sum-monomials

- $f(x) = \sum_i a_i x_i^p$
- $\text{dom } f = \mathbb{R}_{++}^n$, $c > 0$, $a_i > 1$

- $f(x)$ is nondecreasing in each argument if f is convex
Minimization

- If \(f(x,y) \) is convex in \((x,y)\) and \(C \) is a convex set, then:
 \[
 g(y) = \min_{x \in C} f(x,y)
 \]

- Norm is convex: \(||x-y|| \)
 \[
 (x-y) = A \begin{bmatrix} x \ y \end{bmatrix}^T
 \]
 - minimum distance to a set \(C \) is convex:
 \[
 d(x, C) = \min_{y \in C} ||x-y||
 \]

Perspective function

- If \(f \) is convex (concave), then the perspective of \(f \) is convex (concave):
 \[t > 0, \ g(x,t) = t f(x/t) \]
 - computer vision
 - \(f \) convex in \(x \), \(g \) is convex in both \(x, t \)

- KL divergence:
 - \(f(x) = -\log x \) is convex
 - Take the perspective:
 \[
 g(x,t) = -t \log \frac{x}{t}
 \]
 - Sum over many pairs \((x_i, t_i)\)
 \[
 h(x, t) = \sum_i g(x_i, t_i)
 \]
 \[
 KL(p || q) = \sum_x p(x) \log \frac{p(x)}{q(x)}
 \]
Quasiconvex functions

- Unimodal functions are not always convex
- But they are (usually) still easy to optimize:
 - Quasiconvex function:
 - All sublevel sets are convex, for all \(\alpha \in \mathbb{R} \):
 \[
 S_\alpha = \{ x \mid f(x) \leq \alpha \}
 \]
- Equivalent definition: max of extremes is higher than function
 \[
 f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y)
 \]
 \[
 f(\theta x + (1-\theta)y) \leq \max(f(x), f(y))
 \]
- Applications include computer vision (geometric reconstruction) [Ke & Kanade '05]

Log-convex functions

- Function \(f: \mathbb{R}^n \rightarrow \mathbb{R} \), with \(f(x) > 0 \) in all (convex) \(\text{dom} \ f \)
 - \(f \) log-convex if and only if:
 \[
 \log f(\theta x + (1-\theta)y) \leq \theta \log f(x) + (1-\theta) \log f(y)
 \]
 - Or equivalently:
 \[
 f(\theta x + (1-\theta)y) \leq f(x) ^ \theta f(y) ^ (1-\theta)
 \]
- Examples
 - Gaussian
 \[
 f(x) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} e^{-\frac{1}{2} (x-M)^T \Sigma^{-1} (x-M)}
 \]
 \[
 \log f(x) = \log \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} - \frac{1}{2} (x-M)^T \Sigma^{-1} (x-M)
 \]
 \[
 \log \text{convex}
 \]
 \[
 \log \text{concave}
 \]
 \[
 \log \text{concave}
 \]

©2008 Carlos Guestrin
11
What should you know: Convex fns

- definition
- showing that a function is convex/concave
 - first principle
 - first and second order condition
 - epigraph
 - operations that preserve convexity
- quasiconvexity
- log-convexity