

Second order condition (general case)

If f is twice differentiable in dom f

$$\nabla^2 f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1^2} & \frac{\partial f}{\partial x_1 \partial x_2} & - \\ \frac{\partial f}{\partial x_2 \partial x_1} & \frac{\partial f}{\partial x_2} & - \end{pmatrix}$$

■ Then f convex if and only if **dom** f is <u>convex</u> and

Hx VF(x) & O (onvex

D2f(x) ≤ 0 concave

Note 1: Strictly convex if:

Quadratic programming

• $f(x) = (1/2) x^T A x + b^T x + c$

72f(x) = A

- Convex if: A % ■ Strictly convex if: A > 0
- Concave if: A ≼ 0
- Strictly concave if: A < 0

Simple examples

Exponentiation:
$$e^{ax}$$
 $convex on R, any $a \in R$

Powers: x^a on R_{++}
 $Convex for a \le 0$ or $a \ge 1$
 $Concave for 0 \le a \le 1$

Entropy: $-x \log x$
 $Concave on R_{++}$

Entropy: $-x \log x$
 $Concave on R_{++}$
 $concave$$

Extended-value extensions

Convex function f over convex dom f

Extended-value extension:

$$f(x) = \begin{cases} f(x), & \text{if } x \in d \text{ don } f \\ \text{on } & \text{if } x \notin d \text{ don } f \end{cases}$$

Still convex:
$$f(x) = f(x), & \text{onva}; & \text{f}(x) \in f(x) \text{ for } f(x) \text{ for } f(x) \in f(x) \text{ for } f(x) \text{ for } f(x) \in f(x) \text{ for } f(x) \text{ for } f(x) \in f(x) \text{ for } f(x) \text{ for } f(x) \text{ for } f(x) \text{ for } f(x) \in f(x) \text{ for } f($$

Pointwise maximum of affine functions: general representation

- We saw: convex set can be written as intersection of (infinitely many) hyperplanes:C convex, then
- Convex functions can be written as supremum of (infinitely many) lower bounding hyperplanes:
 - □ f convex function, then

©2008 Carlos Guestr

Discussion on this slide subject to mild conditions on sets and functions, see book

17

Composition: scalar differentiable, real domain case

- How do I prove convexity of log-sum-exp-positive-weighted-sum-monomials? :)
- If $h: \mathbb{R}^k \rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}^k$, when is f(x) = h(g(x)) convex (concave)?

 dom $f = \{x \in \text{dom } g \mid g(x) \in \text{dom } h\}$
- Simple case: h:R→R and g:Rⁿ→R, dom g = dom h = R, g and h differentiable
 - $\Box \quad \text{E.g., } g(x) = x^T \sum x, \sum psd, \ h(y) = e^y$
- Second derivative:
 - \Box f''(x) = h''(g(x))g'(x)² + h'(g(x))g''(x)
 - When is f''(x)≥0 (or f''(x)≤0) for all x?
- Example of sufficient (but not necessary) conditions:
 - □ f convex if h is convex and nondecreasing and g is convex
 - □ f convex if h is convex and nonincreasing and g is concave
 - ☐ f concave if h is concave and nondecreasing and g is concave ☐ f concave if h is concave and nonincreasing and g is convex

Composition: scalar, general case

- If h:R^k→R and g:Rⁿ→R^k, when is f(x) = h(g(x)) convex (concave)?

 dom f = {x ∈ dom g| g(x) ∈ dom h}
 - Simple case: h:R→R and g:Rⁿ→R, general domain and non-differentiable
 - □ Example of sufficient (but not necessary) conditions:
 - f convex if h is convex and h nondecreasing and g is convex
 - f convex if h is convex and h nonincreasing and g is concave
 - f concave if h is concave and h nondecreasing and g is concave
 - f concave if h is concave and h nonincreasing and g is convex
 - nondecreasing or nonincreasing condition on extend value extension of h is fundamental
 - $\hfill\Box$ counter example in the book if nondecreasing property holds for h but not for $\tilde{h},$ the composition no longer convex
 - ☐ If $h(x)=x^{3/2}$ with **dom** $h = R_+$, convex but extension is not nondecreasing
 - ☐ If $h(x)=x^{3/2}$ for $x\ge 0$, and h(x)=0 for x<0, **dom** h=R, convex and extension is nondecreasing

©2008 Carlos Guestrin

19

Vector composition: differentiable

- If $h: R^k \rightarrow R$ and $g: R^n \rightarrow R^k$, when is f(x) = h(g(x)) convex (concave)?
- Focus on $f(x) = h(g(x)) = h(g_1(x), g_2(x),..., g_k(x))$
- Second derivative:
 - - When is f'(x)≥0 (or f'(x)≤0) for all x?
- Example of sufficient (but not necessary) conditions:
 - ☐ f convex if h is convex and nondecreasing in each argument, and g_i are convex
 - $\hfill \Box$ \hfill f convex if h is convex and nonincreasing in each argument, and g_i are concave
 - $\hfill\Box$ \hfill f concave if h is concave and nondecreasing in each argument, and g_i are concave
 - $\hfill \Box$ \hfill f concave if h is concave and nonincreasing in each argument, and g_i are convex
- Back to log-sum-exp-positive-weighted-sum-monomials
 - □ **dom** f = R^{n}_{++} , $c_{i}>0$, $a_{i}\ge 1$
 - □ log sum exp convex

©2008 Carlos Guestri

Minimization

• If f(x,y) is convex in (x,y) and C is a convex set, then:

- Norm is convex: ||x-y||
 - □ minimum distance to a set C is convex:

©2008 Carlos Guestrin

21

Perspective function

- If f is convex (concave), then the perspective of f is convex (concave):
 - \Box t>0, g(x,t) = t f(x/t)
- KL divergence:
 - \Box f(x) = -log x is convex
 - □ Take the perspective:
 - \Box Sum over many pairs (x_i,t_i)

©2008 Carlos Guestrir