

Weighted Least-Squares Least-squares regression problem: Basis functions: Find coefficients: Some points are more important than others: Weighted least-squares:

Robust Least Squares*

- Weighted least squares:
- Test set distribution may be different from training set!
 - ☐ Must reweigh according to likelihood ratio:
- But what is the test set distribution???
- Don't want to commit!
 - □ Pick worst case weights!
 - □ Robust LS:

©2008 Carlos Guestrin

 $\ensuremath{^{\star}}$ many other optimization problems are called robust least-squares... :)

Optimization of Robust LS

- Robust LS problem:
- For each set of weights, must solve weighted least squares:
- How do we find worst case weights?
 - □ Option B : guess weights, solve least squares, tweak weights,...

©2008 Carlos Guestrin

Equivalent optimization problem

Robust LS:

• Pushing min w into constraint:

Non-linear constraint, give up!

©2008 Carlos Guestrin

_

Minimum over w as infinite constraints

Non-linear min constraint:

Infinite constraint set:

Great! Had a non-linear constraint, now all I have are infinite constraints, for each alpha!

©2008 Carlos Guestrir

Constraints for one alpha, help with other alphas

- Suppose you have α₀, and introduce a constraint for some coefficients w₀:
- Constraint also upper bound for other weights α:

Linear constraint! Cool!

©2008 Carlos Guestrin

7

A geometric view

- We have an infinite number of linear constraints, many are irrelevant
 - □ Set of constraints forms a convex set*

- Linear program with one constraint per w
 - □ Still infinite...

©2008 Carlos Guestrin

*There is better machinery to understand this, but more when we talk about convexity

Suppose we use a subset of the constraints

- What if we use a finite number of constraints
 - \square Set of constraints at a finite set of coefficients Ω
- Can solve with any LP solver!
- But, solution with subset of constraints may not be a solution to original problem
 - □ Fewer constraints, solution may be infeasible, value of LP too high...

©2008 Carlos Guestrin

9

Active constraints

- Original LP with infinite constraints:
- How many variables?
- How many active constraints at optimal solution?
- So, if we knew set of active constraints at optimal solution Ω^*
 - □ Could discard all other constraints

©2008 Carlos Guestrin

Active Constraints at Optimal Point

- Original problem:
- If we knew set of active constraints at optimal solution Ω^*
 - Could discard all other constraints
 - □ Solution will be feasible with respect to original problem
- Consider some set of constraints Ω :
 - □ Too few, infeasible solution:
 - Just right, feasible solution:

©2008 Carlos Guestrin

11

Constraint Generation

- Start with some finite set of constraints Ω
 - $\hfill \square$ Solve LP, obtain α
- Check is (ε, α) is feasible for infinite constraints:
 - □ If feasible, done!
 - \Box Otherwise, add a constraint that makes (ε, α) infeasible:

But how do we find which constraint to add????

©2008 Carlos Guestrin

Separation Oracle for Robust LS

- Original problem:
- Is (ε,α) feasible?
 - $\hfill\Box$ infeasibility \clubsuit ϵ too high for this particular α
- What's the smallest possible ε?

- Standard weighted LS!
 - $\ \square$ If result is ϵ , then we are done!
 - □ Otherwise found a violated constraint

©2008 Carlos Guestrin

13

Constraint Generation: The General Case

- Given an LP with (possibly infinitely) many constraints:
- Start with some subset of the constraints
- Solve LP to find a solution with new subset of the constraints:
- Separation oracle:
 - If x is feasible:
 - ☐ If x is infeasible:
- Add violated constraint to set
- (It is also possible to remove (some or all) inactive constraints, in addition to adding violated constraints)
 - Makes LP solver step faster
 - □ But requires more outer loop iterations
 - □ Trade-off is application specific

©2008 Carlos Guestrin

Are we there yet?

- When do we stop?
- Solve with infinite set of constraints:
 - $\quad \ \ \, \square \ \ \, \text{Obtain} \, \left(\epsilon_{\text{OPT}}, \alpha_{\text{OPT}}\right)$
- Solve with constraints Ω
 - □ Obtain (ε,α)
- Optimizing subset of constraints, same objective

If we get any feasible point with infinite constraints

□ E.g.,

Bound on how far we are from optimal solution:

©2008 Carlos Guestrin

15

Bound on optimal solution -General case

- Problem with many constraints:
- Some relaxation:
 - □ E.g., only subset of constraints
- If you can obtain some feasible point for the original problem:
- Bound on the optimal solution:

©2008 Carlos Guestrin

Practicalities of Constraint Generation

- Ge
 - Constraint generation converges in a finite number of iterations if the original set is finite
 - □ Can't guarantee fast rate, similar to simplex algorithm
 - ☐ Infinite case: will get arbitrarily close, but not necessarily to the optimum
- Idea of using relaxations to obtain bounds is very useful in general
 - □ E.g., useful in duality (more later in the semester)
- Separation oracle:
 - ☐ Must find some violated constraint
 - □ If we find most violated constraint, usually faster
 - □ Also very useful for proving that LPs can be solved in polytime (ellipsoid algorithm, more later)
- Constraint generation is extremely useful in practice
 - Often, e.g., robust LS, we have a poly-time separation oracle, even if there are exponentially or infinitely many constraints
 - □ Even if polynomially many constraints, a fast oracle can make constraint generation faster than using a standard solver
- Constraint generation can be useful for solving general convex problems, not just LP
- Remember: most LP solvers allow you to start from previous solution
 - ☐ (the one found with fewer constraints)
 - □ Make sure you do this, otherwise approach will be much much much slower

©2008 Carlos Guestrin