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Weighted Least-Squares

 Least-squares regression problem:
 Basis functions:
 Find coefficients:

 Some points are more important than others:
 Weighted least-squares:
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Robust Least Squares*

 Weighted least squares:
 Test set distribution may be different from training set!

 Must reweigh according to likelihood ratio:

 But what is the test set distribution???

 Don’t want to commit!
 Pick worst case weights!
 Robust LS:

* many other optimization problems are called robust least-squares… :)
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Optimization of Robust LS
 Robust LS problem:

 For each set of weights, must solve weighted least squares:

 How do we find worst case weights?
 Option B   : guess weights, solve least squares, tweak weights,…
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Equivalent optimization problem
 Robust LS:

 Pushing min w into constraint:

 Non-linear constraint, give up!
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Minimum over w as infinite constraints

 Non-linear min constraint:

 Infinite constraint set:

 Great! Had a non-linear constraint, now all I have are infinite
constraints, for each alpha!
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Constraints for one alpha, help
with other alphas

 Suppose you have α0, and introduce a constraint for some
coefficients w0:

 Constraint also upper bound for other weights α:

 Linear constraint! Cool!
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A geometric view
 We have an infinite number of linear constraints, many are irrelevant

 Set of constraints forms a convex set*

 Linear program with one constraint per w
 Still infinite…

* There is better machinery to understand this, but more when we talk about convexity
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Suppose we use a subset of the
constraints

 What if we use a finite number of constraints
 Set of constraints at a finite set of coefficients Ω

 Can solve with any LP solver!
 But, solution with subset of constraints may not be a solution to original problem

 Fewer constraints, solution may be infeasible, value of LP too high…
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Active constraints
 Original LP with infinite constraints:

 How many variables?
 How many active constraints at optimal solution?

 So, if we knew set of active constraints at optimal solution Ω*

 Could discard all other constraints
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Active Constraints at Optimal Point
 Original problem:

 If we knew set of active constraints at optimal solution Ω*

 Could discard all other constraints
 Solution will be feasible with respect to original problem

 Consider some set of constraints Ω:
 Too few, infeasible solution:

 Just right, feasible solution:
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Constraint Generation
 Start with some finite set of constraints Ω

 Solve LP, obtain α

 Check is (ε,α) is feasible for infinite constraints:
 If feasible, done!

 Otherwise, add a constraint that makes (ε,α) infeasible:

 But how do we find which constraint to add???
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Separation Oracle for Robust LS
 Original problem:

 Is (ε,α) feasible?
 infeasibility  ε too high for this particular α

 What’s the smallest possible ε?

 Standard weighted LS!
 If result is ε, then we are done!
 Otherwise found a violated constraint
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Constraint Generation:
The General Case

 Given an LP with (possibly infinitely) many constraints:

 Start with some subset of the constraints

 Solve LP to find a solution with new subset of the constraints:

 Separation oracle:
 If x is feasible:

 If x is infeasible:

 Add violated constraint to set

 (It is also possible to remove (some or all) inactive constraints, in addition to adding violated
constraints)
 Makes LP solver step faster
 But requires more outer loop iterations
 Trade-off is application specific
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Are we there yet?
 When do we stop?
 Solve with infinite set of constraints:

 Obtain (εOPT,αOPT)

 Solve with constraints Ω
 Obtain (ε,α)

 Optimizing subset of constraints, same objective


 If we get any feasible point with infinite constraints
 E.g.,

 Bound on how far we are from optimal solution:
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Bound on optimal solution -
General case

 Problem with many constraints:

 Some relaxation:
 E.g., only subset of constraints

 If you can obtain some feasible point for the original problem:

 Bound on the optimal solution:
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Practicalities of Constraint
Generation

 Constraint generation converges in a finite number of iterations if the original set is finite
 Can’t guarantee fast rate, similar to simplex algorithm
 Infinite case: will get arbitrarily close, but not necessarily to the optimum

 Idea of using relaxations to obtain bounds is very useful in general
 E.g., useful in duality (more later in the semester)

 Separation oracle:
 Must find some violated constraint
 If we find most violated constraint, usually faster
 Also very useful for proving that LPs can be solved in polytime (ellipsoid algorithm, more later)

 Constraint generation is extremely useful in practice
 Often, e.g., robust LS, we have a poly-time separation oracle, even if there are exponentially or infinitely many

constraints
 Even if polynomially many constraints, a fast oracle can make constraint generation faster than using a standard solver

 Constraint generation can be useful for solving general convex problems, not just LP

 Remember: most LP solvers allow you to start from previous solution
 (the one found with fewer constraints)
 Make sure you do this, otherwise approach will be much much much slower


