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Weighted Least-Squares
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m Least-squares regression problem:
Basis functions: 1 (), £, (1), .. - /{m(%)

Find coefficients: w, . _ . 1w,
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m Some points are more important than otherg L
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Robust Least Squares™ 72" (' 26
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Weighted least squares:
Test set distribution may be different from training set!
Must reweigh according to likelihood ratio: = % ()(\)’)
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But what is the test set distribution???

Don’t want to commit!

Pick worst case weights!
Robust LS:
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“ many other optimization problems are called robust least-squares... :)
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Optimization of Robust LS f';zﬂéu,-f.-(yp

* A
) 7).
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m For each set of weights, must solve weighted least squares:
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m How do we find worst case weights?
Option B : guess weights, solve least squares, tweak weights,...
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Equivalent optimization problem
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m Pushing min w into constraint: Mmak
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m Non-linear constraint, give up!
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Minimum over w as infinite constraints
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= Non-linear min constraint: max €
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m Great! Had a non-linear constraint, now all | have are infinite
constraints, for each alpha!
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Constraints for one alpha, help
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m  Suppose you have ag, and introduce a constraint for some
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m Constraint also upper bound fw weights_a:
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A geometric view
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m  We have an infinite number of linear constrai
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m Linear program with one constraint per vf
Still infinite...
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Suppose we use a subset of the
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m  What if we use a finite number of constraints l—/L\ <9 N welk
Set of constraints at a finite set of coefficients Q L C l(]z
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= Can solve with any LP solver!

= But, solution with subset of constraints may not be a solution to original problem
Fewer constraints, solutigrrmay be infeasible, value of LP too high... (e, £.0)
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Active constraints
= JEE

m  Original LP with infinite constraints: "’a‘fi( 2 2
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= How many variables? N*! 7 E,)— v 1

= How many active constraints at optimal solution? at mogf ~t |
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Active Constraints at Optimal Point
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= Original problem: "‘/f‘f(i ?’z_ s % & ({_7 _ UL ’—FJ)L W& A_
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m If we knew set of active constraints at optimal solution Q*
Could discard all other constraints

Solution will be feasible with respect to original problem = E= min E"(‘) (5-tr
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m  Consider some set of constraints Q:

Toofew,ineasible soution: (£, o |} =) €L 7 Eopr

Just right, feasible solution: ( EJL—,O(JL\ )| 8_/,_ - éo?T
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m  Check is (g,q) is feasible for infinite constraints: KR N

If feasible, done! K26 Eo °L.n,6 =1 &= TJ"\ JZD(M&J‘“'S‘X
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Otherwise, add_a constraint that makes (a,%infeasible: oF
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Constraint Generation
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m  Start with some finite set of constraints Q
Solve LP, obtain o a_ / Ea —

m  But how do we find which constraint to add??? €°\JL =
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Separation Oracle for Robust LS
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m  What's the smallest possible ?
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m  Standard weighted L S! ’Q‘ \
If result is &,then we are done! - < Z oK:\ (.’eb wd"”‘ S
Otherwise found a violated constraint
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Constraint Generation: 7T s e

bsGeneral Case

1
= Given an LP with (possibly infinitely) many constraints: max 'K . .~
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= Start with some subset of the constraints _/{___ ¢_ T_
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If x is infeasible:
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m  (Itis also possible to remove (some or all) inactive constraints, in addition to adding wolated
constraints)
Makes LP solver step faster
But requires more outer loop iterations
Trade-off is application specific
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Are we there yet?
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m  Solve with constraints Q
Obtain (S:_OBL

= Optimizing subset of constraints, same objective
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Bound on optimal solution -

. Seneral case

m  Problem with many constraints: Mok C'Y
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m  Some relaxation: T
E.g., only subset of constraints ——/L cL
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m If you can obtain some feasible point for the original problem:
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®  Bound on the optimal solution:
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Practicalities of Constraint

Constraint generation converges in a finite number of iterations if the original set is finite
\—

Can't guarantee fast rate, similar to simplex algorithm
Infinite case: will get arbitrarily close, but not necessarily to the optimum
e gl L0

Idea of using relaxations to obtain bounds is very useful in general
E.g., useful in duality (more later in the semester)
-

Separation-oracle:
Must find some violated constraint
If we find most violated constraint, usually faster
Also very useful for proving that LPs can be solved in polytime (ellipsoid algorithm, more later)

Constraint generation is extremely useful in practice
Often, e.g., robust LS, we have a poly-Ti on oracle, even if there are exponentially or infinitely many
constraints

Even if polynomially many constraints, a fast oracle can make constraint generation faster than using a standard solver
At Stk S

Constraint generation can be useful for solving general convex problems, not just LP
NVEX Proy

Remember: mo. start from previous solution
(the one found with fewer constraints)
Make sure you do this, otherwise approach will be much much much slower
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