

Constraint generation and duality

- Constraint generation: find most important constraints
- most variables are Zero What's the dual equivalent? incrementally build set of non-zero versables
- Dual:

min
$$\Xi$$
 c; y;

g at solution to dual your

 $\Pi - n$ variables must be zero

 Ξ aij y; Ξ by Ξ to Ξ in variables may or my of Ξ dero

Column generation (aka variable generation)

Dual problem:

$$egin{array}{cccc} \min & \sum_{i \in \mathcal{I}} & c_i y_i \ s.t. & \sum_{i \in \mathcal{I}} & a_{ij} y_i = b_j, & orall j \in 1, \ldots, m \ & y_i \geq 0, & orall i \in \mathcal{I} \end{array}$$

- Many many variables!!
- At optimal basic feasible solution
 - □ Most variables are zero 11 -h mustbe zero
- Idea:
- dea:

 Set most variables to zero I-1 must be zero

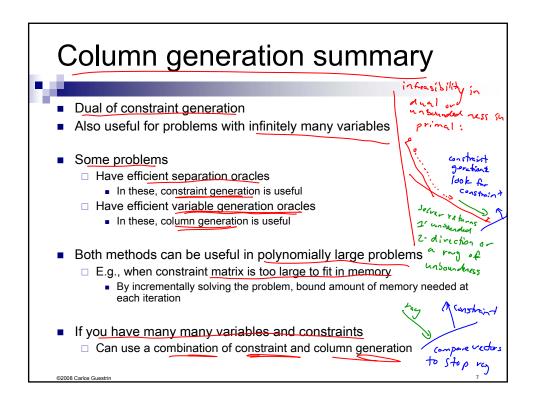
 Solve problem with other variables:

 yiien

 Zen aiggi=bj Hj vars that the the through the

Solving problem with subset of variables

 $y_i \ge 0, \ \forall i \in \Omega$


- Solve problem with $\min_{y} \quad \sum_{i \in \Omega} \quad c_{i}y_{i}$ subset of variables $s.t. \quad \sum_{i \in \Omega} \quad a_{ij}y_{i} = b_{j}, \quad \forall j \in 1, \ldots, m$
 - Rest of variables set to zero
 - Questions:
 - □ How do we decide what variables to use?
 - □ How do we decide when we are done?

©2008 Carlos Guestrir

What variables should we add?

Same as simplex

Graph and this in your HW sie Ω and this in your HW s.t. $\Sigma_{i \in \Omega}$ and this is Ω solve problem with variables Ω At optimal basic feasible solution set of basic variables Ω set of basic variables Ω and Ω solve problem with variables Ω set of basic variables Ω set of basic variables Ω solve Ω so

