What’s next

- Thus far: Variable elimination
 - (Often) Efficient algorithm for inference in graphical models

- Next: Understanding complexity of variable elimination
 - Will lead to cool junction tree algorithm later
Complexity of variable elimination – Graphs with loops

Moralize graph:
Connect parents into a clique and remove edge directions

Connect nodes that appear together in an initial factor

Eliminating a node – Fill edges

Eliminate variable
Connect neighbors
The induced graph $I_{\mathcal{F}}$ for elimination order \mathcal{E} has an edge $X_i - X_j$ if X_i and X_j appear together in a factor generated by VE for elimination order \mathcal{E} on factors \mathcal{F}.

Different elimination order can lead to different induced graph.

Elimination order:
{G,C,D,S,I,L,H,J}
Induced graph and complexity of VE

- Structure of induced graph encodes complexity of VE!!!
- **Theorem:**
 - Every factor generated by VE subset of a maximal clique in I_F corresponds to a factor generated by VE
 - Induced width (or treewidth)
 - Size of largest clique in I_F minus 1
 - Minimal induced width – induced width of best order

Elimination order: \{C,D,I,S,L,H,J,G\}

Example: Large induced-width with small number of parents

Compact representation ⇒ Easy inference 🎉
Finding optimal elimination order

- **Theorem**: Finding best elimination order is NP-complete:
 - Decision problem: Given a graph, determine if there exists an elimination order that achieves induced width ≤ K

- **Interpretation**:
 - Hardness of finding elimination order in addition to hardness of inference
 - Actually, can find elimination order in time exponential in size of largest clique – same complexity as inference

Elimination order: {C,D,I,S,L,H,J,G}

Induced graphs and chordal graphs

- **Chordal graph**:
 - Every cycle $X_1 - X_2 - \ldots - X_k - X_1$ with $k \geq 3$ has a chord
 - Edge $X_i - X_j$ for non-consecutive i & j

- **Theorem**:
 - Every induced graph is chordal

- “Optimal” elimination order easily obtained for chordal graph
Chordal graphs and triangulation

- **Triangulation**: turning graph into chordal graph
- **Max Cardinality Search**:
 - Simple heuristic
 - Initialize unobserved nodes X as unmarked
 - For $k = |X|$ to 1
 - $X \leftarrow$ unmarked var with most marked neighbors
 - $\angle(X) \leftarrow k$
 - Mark X
- **Theorem**: Obtains optimal order for chordal graphs
- Often, not so good in other graphs!

Minimum fill/size/weight heuristics

- Many more effective heuristics
 - see reading
- **Min (weighted) fill heuristic**
 - Often very effective
- Initialize unobserved nodes X as unmarked
- For $k = 1$ to $|X|
 - $X \leftarrow$ unmarked var whose elimination adds fewest edges
 - $\angle(X) \leftarrow k$
 - Mark X
 - Add fill edges introduced by eliminating X
- Weighted version:
 - Consider size of factor rather than number of edges
Choosing an elimination order

- Choosing best order is NP-complete
 - Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can’t beat NP-hardness of inference
 - Even optimal order can lead to exponential variable elimination computation
- In practice
 - Variable elimination often very effective
 - Many (many many) approximate inference approaches available when variable elimination too expensive
 - Most approximate inference approaches build on ideas from variable elimination

Most likely explanation (MLE)

- Query: \[\arg\max_{x_1, \ldots, x_n} P(x_1, \ldots, x_n \mid e) \]

- Using defn of conditional probs:
 \[\arg\max_{x_1, \ldots, x_n} P(x_1, \ldots, x_n \mid e) = \arg\max_{x_1, \ldots, x_n} \frac{P(x_1, \ldots, x_n, e)}{P(e)} \]

- Normalization irrelevant:
 \[\arg\max_{x_1, \ldots, x_n} P(x_1, \ldots, x_n \mid e) = \arg\max_{x_1, \ldots, x_n} P(x_1, \ldots, x_n, e) \]
Max-marginalization

Example of variable elimination for MLE – Forward pass
Example of variable elimination for MLE – Backward pass

MLE Variable elimination algorithm – Forward pass

- Given a BN and a MLE query $\max_{x_1,\ldots,x_n} P(x_1,\ldots,x_n,e)$
- Instantiate evidence $E=e$
- Choose an ordering on variables, e.g., X_1, \ldots, X_n
- For $i = 1$ to n, if $X_i \notin E$
 - Collect factors f_1,\ldots,f_k that include X_i
 - Generate a new factor by eliminating X_i from these factors

 $$g = \max_{x_i} \prod_{j=1}^{k} f_j$$

- Variable X_i has been eliminated!
MLE Variable elimination algorithm
– Backward pass

- \{x_1^*, \ldots, x_n^*\} will store maximizing assignment
- For \(i = n \) to 1, If \(X_i \notin E \)
 - Take factors \(f_1, \ldots, f_k \) used when \(X_i \) was eliminated
 - Instantiate \(f_1, \ldots, f_k \) with \(\{x_{i+1}^*, \ldots, x_n^*\} \)
 - Now each \(f_j \) depends only on \(X_i \)
 - Generate maximizing assignment for \(X_i \):
 \[
 x_i^* \in \arg\max_{x_i} \prod_{j=1}^{k} f_j
 \]

What you need to know about VE

- Variable elimination algorithm
 - Eliminate a variable:
 - Combine factors that include this var into single factor
 - Marginalize var from new factor
 - Cliques in induced graph correspond to factors generated by algorithm
 - Efficient algorithm (“only” exponential in induced-width, not number of variables)
 - If you hear: “Exact inference only efficient in tree graphical models”
 - You say: “No!! Any graph with low induced width”
 - And then you say: “And even some with very large induced-width” (special recitation)
 - Elimination order is important!
 - NP-complete problem
 - Many good heuristics
 - Variable elimination for MLE
 - Only difference between probabilistic inference and MLE is “sum” versus “max”
What if I want to compute $P(X_i|x_0,x_{n+1})$ for each i?

Compute:

$P(X_i | x_0, x_{n+1})$

Variable elimination for each i?

Variable elimination for every i, what's the complexity?

Reusing computation

Compute:

$P(X_i | x_0, x_{n+1})$
Cluster graph

- **Cluster graph**: For set of factors F
 - Undirected graph
 - Each node i associated with a cluster C_i
 - *Family preserving*: for each factor $f_j \in F$,
 - \exists node i such that scope[f_j] $\subseteq C_i$
 - Each edge $i - j$ is associated with a separator $S_{ij} = C_i \cap C_j$

Factors generated by VE

- Elimination order:
 - $\{C, D, I, S, L, H, J, G\}$
Cluster graph for VE

- **VE generates cluster tree!**
 - One clique for each factor used/generated
 - Edge $i \rightarrow j$, if f_i used to generate f_j
 - "Message" from i to j generated when marginalizing a variable from f_i
 - Tree because factors only used once

- **Proposition:**
 - "Message" δ_{ij} from i to j
 - $\text{Scope}[\delta_{ij}] \subseteq S_{ij}$

Running intersection property

- **Running intersection property (RIP)**
 - Cluster tree satisfies RIP if whenever $X \in C_i$ and $X \in C_j$ then X is in every cluster in the (unique) path from C_i to C_j

- **Theorem:**
 - Cluster tree generated by VE satisfies RIP
Constructing a clique tree from VE

- Select elimination order
- Connect factors that would be generated if you run VE with order
- Simplify!
 - Eliminate factor that is subset of neighbor

Find clique tree from chordal graph

- Triangulate moralized graph to obtain chordal graph
- Find maximal cliques
 - NP-complete in general
 - Easy for chordal graphs
 - Max-cardinality search
- Maximum spanning tree finds clique tree satisfying RIP!!!
 - Generate weighted graph over cliques
 - Edge weights \((i,j)\) is separator size – \(|C_i \cap C_j|\)
Clique tree & Independencies

- **Clique tree (or Junction tree)**
 - A cluster tree that satisfies the RIP
- **Theorem**:
 - Given some BN with structure G and factors F
 - For a clique tree T for F consider $C_i - C_j$ with separator S_{ij}:
 - X – any set of vars in C_i side of the tree
 - Y – any set of vars in C_j side of the tree
 - Then, $(X \perp Y \mid S_{ij})$ in BN
 - Furthermore, $I(T) \subseteq I(G)$

Variable elimination in a clique tree 1

- **Clique tree for a BN**
 - Each CPT assigned to a clique
 - Initial potential $\pi_0(C_i)$ is product of CPTs
Variable elimination in a clique tree 2

- VE in clique tree to compute P(X_i)
 - Pick a root (any node containing X_i)
 - Send messages recursively from leaves to root
 - Multiply incoming messages with initial potential
 - Marginalize vars that are not in separator
 - Clique ready if received messages from all neighbors

Belief from message

- Theorem: When clique C_i is ready
 - Received messages from all neighbors
 - Belief π_i(C_i) is product of initial factor with messages:
Choice of root

- Message does not depend on root!!!

Root: node 5

Root: node 3

“Cache” computation: Obtain belief for all roots in linear time!!

Shafer-Shenoy Algorithm
(a.k.a. VE in clique tree for all roots)

- Clique C_i ready to transmit to neighbor C_j if received messages from all neighbors but j
 - Leaves are always ready to transmit
- While $\exists C_i$ ready to transmit to C_j
 - Send message $\delta_{i \rightarrow j}$
- Complexity: Linear in # cliques
 - One message sent each direction in each edge
- Corollary: At convergence
 - Every clique has correct belief
Calibrated Clique tree

- Initially, neighboring nodes don’t agree on “distribution” over separators
- **Calibrated clique tree:**
 - At convergence, tree is calibrated
 - Neighboring nodes agree on distribution over separator

Answering queries with clique trees

- Query within clique
 - Incremental updates – Observing evidence $Z=z$
 - Multiply some clique by indicator $1(Z=z)$

- Query outside clique
 - Use variable elimination!
Message passing with division

- Computing messages by multiplication:

- Computing messages by division:

Lauritzen-Spiegelhalter Algorithm (a.k.a. belief propagation)

- Initialize all separator potentials to 1
 - $\mu_{ij} \leftarrow 1$
- All messages ready to transmit
- While $\exists \delta_{i \rightarrow j}$ ready to transmit
 - $\mu_{ij}' \leftarrow$
 - If $\mu_{ij}' \neq \mu_{ij}$
 - $\delta_{i \rightarrow j} \leftarrow$
 - $\pi_{j} \leftarrow \pi_{j} \times \delta_{i \rightarrow j}$
 - $\mu_{ij} \leftarrow \mu_{ij}'$
 - \forall neighbors k of $j, k \neq i, \delta_{j \rightarrow k}$ ready to transmit
- Complexity: Linear in # cliques
 - for the “right” schedule over edges (leaves to root, then root to leaves)
- Corollary: At convergence, every clique has correct belief
VE versus BP in clique trees

- VE messages (the one that multiplies)
- BP messages (the one that divides)

Clique tree invariant

- Clique tree potential:
 - Product of clique potentials divided by separators potentials

- Clique tree invariant:
 - $P(X) = \pi_T(X)$
Belief propagation and clique tree invariant

- **Theorem**: Invariant is maintained by BP algorithm!

- BP reparameterizes clique potentials and separator potentials
 - At convergence, potentials and messages are marginal distributions

Subtree correctness

- **Informed message** from i to j, if all messages into i (other than from j) are informed
 - Recursive definition (leaves always send informed messages)

- **Informed subtree**: All incoming messages informed

- **Theorem**: Potential of connected informed subtree \(T' \) is marginal over scope[\(T \)]

- **Corollary**: At convergence, clique tree is *calibrated*
 - \(\pi_i = P(\text{scope}[\pi_i]) \)
 - \(\mu_j = P(\text{scope}[\mu_j]) \)
Clique trees versus VE

- Clique tree advantages
 - Multi-query settings
 - Incremental updates
 - Pre-computation makes complexity explicit

- Clique tree disadvantages
 - Space requirements – no factors are “deleted”
 - Slower for single query
 - Local structure in factors may be lost when they are multiplied together into initial clique potential

Clique tree summary

- Solve marginal queries for all variables in only twice the cost of query for one variable
- Cliques correspond to maximal cliques in induced graph
- Two message passing approaches
 - VE (the one that multiplies messages)
 - BP (the one that divides by old message)
- Clique tree invariant
 - Clique tree potential is always the same
 - We are only reparameterizing clique potentials
- Constructing clique tree for a BN
 - from elimination order
 - from triangulated (chordal) graph
- Running time (only) exponential in size of largest clique
 - Solve exactly problems with thousands (or millions, or more) of variables, and cliques with tens of nodes (or less)