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What’s next 

  Thus far: Variable elimination 
  (Often) Efficient algorithm for inference in graphical

 models 

  Next: Understanding complexity of variable
 elimination 
 Will lead to cool junction tree algorithm later 
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Complexity of variable elimination –
 Graphs with loops 

Connect nodes that appear together in an initial factor 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

Moralize graph: 
Connect parents  
into a clique and  
remove edge directions 
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Eliminating a node – Fill edges 

Eliminate variable 
add Fill Edges: 
Connect neighbors 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 
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Induced graph 

Elimination order: 
{C,D,S,I,L,H,J,G} 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

The induced graph IF  for elimination order    
has an edge Xi – Xj if Xi and Xj appear together 
in a factor generated by VE for elimination order   
on factors F  
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Different elimination order can lead
 to different induced graph 

Elimination order: 
{G,C,D,S,I,L,H,J} 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 
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Induced graph and complexity of VE 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

  Structure of induced graph
 encodes complexity of VE!!! 

  Theorem: 
  Every factor generated by VE subset

 of a maximal clique in IF  
  For every maximal clique in IF
 corresponds to a factor generated by
 VE  

  Induced width (or treewidth) 
  Size of largest clique in IF minus 1 
  Minimal induced width – induced width

 of best order Á 

Read complexity from cliques in induced graph 

Elimination order: 
{C,D,I,S,L,H,J,G} 
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Example: Large induced-width with
 small number of parents 

Compact representation ⇒ Easy inference  
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Finding optimal elimination order 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

  Theorem: Finding best elimination
 order is NP-complete: 
  Decision problem: Given a graph,

 determine if there exists an elimination
 order that achieves induced width ≤ K 

  Interpretation: 
  Hardness of finding elimination order in

 addition to hardness of inference 
  Actually, can find elimination order in time

 exponential in size of largest clique –
 same complexity as inference Elimination order: 

{C,D,I,S,L,H,J,G} 
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Induced graphs and chordal graphs 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

  Chordal graph: 
  Every cycle X1 – X2 – … – Xk – X1 with

 k ≥ 3 has a chord 
  Edge Xi – Xj for non-consecutive i & j 

  Theorem: 
  Every induced graph is chordal 

  “Optimal” elimination order easily
 obtained for chordal graph 
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Chordal graphs and triangulation 
  Triangulation: turning graph into chordal

 graph 
  Max Cardinality Search: 

  Simple heuristic 
  Initialize unobserved nodes X as

 unmarked 
  For k = |X| to 1 

  X  unmarked var with most marked
 neighbors 

  (X)  k 
  Mark X 

  Theorem: Obtains optimal order for
 chordal graphs 

  Often, not so good in other graphs! 

B 

E D 

H 
G 

A 

F 

C 

10-708 – ©Carlos Guestrin 2006-2008 12 

Minimum fill/size/weight heuristics 
  Many more effective heuristics 

  see reading 
  Min (weighted) fill heuristic 

  Often very effective 

  Initialize unobserved nodes X as
 unmarked 

  For k = 1 to |X| 
  X  unmarked var whose elimination

 adds fewest edges 
  (X)  k 
  Mark X 
  Add fill edges introduced by eliminating X 

  Weighted version: 
  Consider size of factor rather than number

 of edges 

B 

E D 

H 
G 

A 

F 

C 
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Choosing an elimination order 

  Choosing best order is NP-complete 
 Reduction from MAX-Clique 

  Many good heuristics (some with guarantees) 
  Ultimately, can’t beat NP-hardness of inference 

 Even optimal order can lead to exponential variable
 elimination computation 

  In practice 
 Variable elimination often very effective 
 Many (many many) approximate inference approaches

 available when variable elimination too expensive 
 Most approximate inference approaches build on ideas

 from variable elimination 
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Most likely explanation (MLE) 

  Query: 

  Using defn of conditional probs: 

  Normalization irrelevant: 

Flu Allergy 

Sinus 

Headache Nose 
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Max-marginalization 

Flu Sinus Nose=t 
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Example of variable elimination for
 MLE – Forward pass 

Flu Allergy 

Sinus 

Headache Nose=t 
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Example of variable elimination for
 MLE – Backward pass 

Flu Allergy 

Sinus 

Headache Nose=t 
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MLE Variable elimination algorithm
 – Forward pass 

  Given a BN and a MLE query maxx1,…,xn
P(x1,…,xn,e) 

  Instantiate evidence E=e 
  Choose an ordering on variables, e.g., X1, …, Xn  
  For i = 1 to n, If Xi∉E 

 Collect factors f1,…,fk that include Xi 
 Generate a new factor by eliminating Xi from these factors 

 Variable Xi has been eliminated! 
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MLE Variable elimination algorithm
 – Backward pass 

  {x1
*,…, xn

*} will store maximizing assignment 
  For i = n to 1, If Xi ∉ E 

 Take factors f1,…,fk used when Xi was eliminated 
  Instantiate f1,…,fk, with {xi+1

*,…, xn
*} 

  Now each fj depends only on Xi 

 Generate maximizing assignment for Xi: 
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What you need to know about VE 

  Variable elimination algorithm 
  Eliminate a variable: 

  Combine factors that include this var into single factor 
  Marginalize var from new factor 

  Cliques in induced graph correspond to factors generated by algorithm  
  Efficient algorithm (“only” exponential in induced-width, not number of

 variables) 
  If you hear: “Exact inference only efficient in tree graphical models” 
  You say: “No!!! Any graph with low induced width” 
  And then you say: “And even some with very large induced-width” (special

 recitation) 
  Elimination order is important! 

  NP-complete problem 
  Many good heuristics 

  Variable elimination for MLE 
  Only difference between probabilistic inference and MLE is “sum” versus

 “max” 
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What if I want to compute P(Xi|x0,xn+1)
 for each i? 

Variable elimination for each i? 

Compute: 

Variable elimination for every i, what’s the complexity? 

X0 X5 X3 X4 X2 X1 
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Reusing computation 

Compute: 
X0 X5 X3 X4 X2 X1 
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Cluster graph 

  Cluster graph: For set of factors F 
 Undirected graph 
 Each node i associated with a cluster Ci  
 Family preserving: for each factor fj 2 F,  

 9 node i such that scope[fi] ⊆ Ci 
 Each edge i – j is associated with a

 separator Sij = Ci ∩ Cj 

DIG 

JSL GJSL 

HGJ 

CD 

GSI 

D 

S G 

H 
J 

C 

L 

I 
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Factors generated by VE 

Elimination order: 
{C,D,I,S,L,H,J,G} 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 
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Cluster graph for VE 

  VE generates cluster tree! 
 One clique for each factor used/generated 
 Edge i – j, if fi used to generate fj 
  “Message” from i  to j generated when

 marginalizing a variable from fi 
 Tree because factors only used once 

  Proposition: 
  “Message” δ

ij
 from i  to j 

 Scope[δ
ij
] ⊆ Sij 

DIG 

JSL GJSL 

HGJ 

CD 

GSI 
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Running intersection property 

  Running intersection property (RIP) 
 Cluster tree satisfies RIP if whenever X2Ci

 and X2Cj then X is in every cluster in the
 (unique) path from Ci to Cj 

  Theorem: 
 Cluster tree generated by VE satisfies RIP 

DIG 

JSL GJSL 

HGJ 

CD 

GSI 
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Constructing a clique tree from VE 

  Select elimination order   

  Connect factors that would
 be generated if you run VE
 with order   

  Simplify! 
  Eliminate factor that is subset

 of neighbor 
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Find clique tree from chordal graph 

  Triangulate moralized graph
 to obtain chordal graph 

  Find maximal cliques 
  NP-complete in general 
  Easy for chordal graphs  
  Max-cardinality search  

  Maximum spanning tree finds
 clique tree satisfying RIP!!! 
  Generate weighted graph over

 cliques 
  Edge weights (i,j) is separator

 size –  |Ci∩Cj| 

Difficulty 

Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

SAT 
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Clique tree & Independencies 

  Clique tree (or Junction tree) 
 A cluster tree that satisfies the RIP 

  Theorem: 
 Given some BN with structure G and factors F 
 For a clique tree T for F consider Ci – Cj with

 separator Sij: 
  X – any set of vars in Ci side of the tree 
  Y – any set of vars in Ci side of the tree 

 Then, (X ⊥ Y | Sij) in BN 
 Furthermore, I(T) ⊆ I(G) 

DIG 

JSL GJSL 

HGJ 

CD 

GSI 

10-708 – ©Carlos Guestrin 2006-2008 30 

Variable elimination in a clique tree 1 

  Clique tree for a BN 
 Each CPT assigned to a clique 
  Initial potential π0(Ci) is product of CPTs 

C2: DIG C4: GJSL C5: HGJ C1: CD C3: GSI 

D 

S G 

H 
J 

C 

L 

I 
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Variable elimination in a clique tree 2 

  VE in clique tree to compute P(Xi) 
 Pick a root (any node containing Xi) 
 Send messages recursively from leaves to root 

  Multiply incoming messages with initial potential 
  Marginalize vars that are not in separator 

 Clique ready if received messages from all neighbors 

C2: DIG C4: GJSL C5: HGJ C1: CD C3: GSI 
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Belief from message 

  Theorem: When clique Ci is ready 
 Received messages from all neighbors 
 Belief π

i
(Ci) is product of initial factor with messages: 
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Choice of root 

Root: node 5 

Root: node 3 

  Message does not
 depend on root!!! 

“Cache” computation: Obtain belief for all roots in linear time!! 
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Shafer-Shenoy Algorithm  
(a.k.a. VE in clique tree for all roots) 

  Clique Ci ready to transmit to
 neighbor Cj if received messages
 from all neighbors but j 
 Leaves are always ready to transmit 

  While 9 Ci ready to transmit to Cj 
 Send message δi! j 

  Complexity: Linear in # cliques 
 One message sent each direction in

 each edge 
  Corollary: At convergence 

 Every clique has correct belief 

C2 

C4 

C5 

C1 

C3 

C7 

C6 
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Calibrated Clique tree 

  Initially, neighboring nodes don’t agree on
 “distribution” over separators 

  Calibrated clique tree: 
 At convergence, tree is calibrated 
 Neighboring nodes agree on distribution over separator 
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Answering queries with clique trees 

  Query within clique 

  Incremental updates – Observing evidence Z=z 
 Multiply some clique by indicator 1(Z=z) 

  Query outside clique 
 Use variable elimination! 
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Message passing with division 

  Computing messages by multiplication: 

  Computing messages by division: 

C2: DIG C4: GJSL C5: HGJ C1: CD C3: GSI 
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Lauritzen-Spiegelhalter Algorithm  
(a.k.a. belief propagation) 

  Initialize all separator potentials to 1 
  µij ← 1 

  All messages ready to transmit 
  While 9 δi! j ready to transmit 

 µij’   ←  
  If µij’ ≠ µij 

  δi!j       ← 
   πj    ←  πj    x δi!j 
   µij    ← µij’ 
   8 neighbors k of j, k≠ i, δj!k ready to transmit 

  Complexity: Linear in # cliques 
  for the “right” schedule over edges (leaves to root, then root to leaves) 

  Corollary: At convergence, every clique has correct belief 

C2 

C4 
C5 

C1 

C3 

C7 
C6 

Simplified description 
see reading for details 
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VE versus BP in clique trees 

  VE messages (the one that multiplies) 

  BP messages (the one that divides) 
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Clique tree invariant 

  Clique tree potential: 
 Product of clique potentials divided by separators potentials 

  Clique tree invariant: 
 P(X) = πΤ (X) 
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Belief propagation and clique tree
 invariant 

  Theorem: Invariant is maintained by BP algorithm! 

  BP reparameterizes clique potentials and
 separator potentials 
 At convergence, potentials and messages are marginal

 distributions 
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Subtree correctness 

  Informed message from i to j, if all messages into i
 (other than from j) are informed 
 Recursive definition (leaves always send informed

 messages) 
  Informed subtree: 

 All incoming messages informed 
  Theorem: 

 Potential of connected informed subtree T’ is marginal over
 scope[T’] 

  Corollary: 
 At convergence, clique tree is calibrated 

   πi = P(scope[πi]) 
   µij = P(scope[µij]) 
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Clique trees versus VE 

  Clique tree advantages 
 Multi-query settings 
  Incremental updates 
 Pre-computation makes complexity explicit 

  Clique tree disadvantages 
 Space requirements – no factors are “deleted” 
 Slower for single query 
 Local structure in factors may be lost when they are

 multiplied together into initial clique potential 
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Clique tree summary 
  Solve marginal queries for all variables in only twice the

 cost of query for one variable 
  Cliques correspond to maximal cliques in induced graph 
  Two message passing approaches 

  VE (the one that multiplies messages) 
  BP (the one that divides by old message) 

  Clique tree invariant 
  Clique tree potential is always the same 
  We are only reparameterizing clique potentials 

  Constructing clique tree for a BN 
  from elimination order 
  from triangulated (chordal) graph 

  Running time (only) exponential in size of largest clique 
  Solve exactly problems with thousands (or millions, or more) of

 variables, and cliques with tens of nodes (or less)  


