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What’s next
= JEE
m Thus far: Variable elimination

(Often) Efficient algorithm for inference in graphical
models

m Next: Understanding complexity of variable
elimination
Will lead to cool junction tree algorithm later




Complexity of variable elimination —

Graﬁhs with loops
Moralize graph:
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The induced graph I, for elimination order <
I N d u Ced g ra p has an edge X, - X; if X; and X, appear together

in a factor generated by VE for elimination order <
. = on factors F

Coherencg Elimination order:

{C,D,S,I.LH,J,G}
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Different elimination order can lead
to different induced graph
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Induced graph and complexity of VE
X

Read complexity from cliques mﬂ%é’géqﬁ;é%ﬁ =)
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CompeXi ? "w Structure of induced graph
lieer 2 2 h encodes complexity of VE!

el el
b;\:,:‘;lf?é e in) Né‘:’ﬁ Theorem:
@ fee ) Every factor generated by VE subset
1 of a maximal clique in I
For every maximal clique in I
corresponds to a factor generated by
VE

m Induced width (or treewidth)

Size of largest cligue in Iz minus 1
Minimal induced width — induced width
of best order <

Elimination order:
{C,D,I,S,L,H,J,G}

Example: Large induced-width with
small number of parents
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Compact representation > Easy inference ®




Finding optimal elimination order

m Theorem: Finding best elimination

order is NP-complete:

| Decision problem: Given a graph,
determine if there exists an elimination
order that achieves induced width < K

m Interpretation:

Hardness of finding elimination order in
addition to hardness of inference
Actually, can find eliminati erin time
exponential in size of largest clique — sam
complexity as inference

I
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Elimination order:
{C,D,I,S,L,H,J,G}

Induced graphs and chordal graphs
"
m Chordal graph:
g?hzxscfc&dxz—._—xk—m with
= Edge X, - X; for non-consecutive i & j

m Theorem:
Every induced graph is chordal

m “Optimal” elimination order easily
obtained for chordal graph

0&0{A no  \RL/ Q(A S
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Chordal graphs and triangulation

m Triangulation: turning graph into chordal
graph
m Max Cardinality Search:
Simple heuristic
m Initialize unobserved nodes X as
unmarked
m Fork=|X|to1
X € unmarked var with most marked
neighbors

<(X) € k
Mark X

m Theorem: Obtains optimal order for
chordal graphs

m Often, not so good in other graphs!

Minimum fill/size/weight heuristics
"

m  Many more effective heuristics

1 see reading
Ca D = Min (weighted) fill heuristic

Often very effective

m Initialize unobserved nodes X as
unmarked
m Fork=1to|X|
/11 X € unmarked var whose elimination
L adds fewest edges
<(X) € k
Mark X
Add fill edges introduced by eliminating X

m Weighted version:

Consider size of factor rather than number
of edges
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Choosing an elimination order
“ JEE M
m Choosing best order is NP-complete Y ok,
Reduction from MAX-Clique R A oy T
m Many good heuristics (some with guarantees)

m Ultimately, can’t beat NP-hardness of inference

Even optimal order can lead to exponential variable
elimination computation

m In practice
Variable elimination often very effective

Many (many many) approximate inference approaches
available when variable elimination too expensive

Most approximate inference approaches build on ideas
from variable elimination

Most likely explanation (MLE)
~ CQ

m Query: axrlgmgx P(x1,...,2zn|e)

m Using defn of conditional probs:
P(xz1,...,zn,€)

argmax P(z1,...,xn | €) = argmax
ZL1,---3Im T1,---5Tn P(e)
T
Llnsﬂ}\{\
o e ] wetX
m Normalization irrelevant:
argmax P(z1,...,zn | €) = argmax P(x1,...,Zn,€)
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Example of variable elimination for

MLE — Forward pass
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Example of variable elimination for

MLE — Bagkward pass
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MLE Variable elimination algorithm

_ =Forward pass

m Given a BN and a MLE query max,,
m Instantiate evidence E=e

m Choose an ordering on variables, e.g., X;, ..., X,
m Fori=1ton, If XigE

Collect factors f,,...,f, that include X;
Generate a newXL or by eliminating X, from these factors
on \)
g = max H i
j=1
Variable X; has been eliminated!




MLE Variable elimination algorithm
— Backward pass
S

m {X,’,..., X, } will store maximizing assignment
mFori=nto1,If X, ¢ E
Take factors f,,...,f, used when X, was eliminated
Instantiatem C:: 67(“'[3 O&Q@"‘A
= Now each f, depends only on X; Vers J—I/m‘ ’wl.,_

Generate maximizing assignment for X;: A il fore
k

xf € argmax [] f;
Ty j:]-

What you need to know about VE
" S

m Variable elimination algorithm
Eliminate a variable:
= Combine factors that include this var into single factor
= Marginalize var from new factor
Cliques in induced graph correspond to factors generated by algorithm

Efficient algorithm (“only” exponential in induced-width, not number of
variables)

= If you hear: “Exact inference only efficient in tree graphical models”

= You say: “No!!!l Any graph with low induced wi

= And then you say: “And even some with very large induced-width” épecial
—_

soale ¢ Ll 5 U
m Eliminafion order is important!
NP-complete problem
Many good heuristics

m Variable elimination for MQE

Only difference between probabilistic inference and MPE is “sum” versus
“max’ -




What if | want to compute P(Xi[Xy,X+1)
for each i?

Compute:

BDDDD® K o

Variable elimination for eacg/
O(~)

Variable elimination for every i, what’'s the complexity?
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Cluster graph % g
“ JE
m Cluster graph: For set of factors F
Undirected graph | G
Each node i associated with a cluster C,
Family preserving: for each factor f; € F,
3 node i such that scope[f]] = C;
Each edge i —j is associated with a
separator S; = C; N G

Elimination order:
{C,D,l,S,L,H,J,G}
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Cluster graph for VE

“ JEE

#(¢D)  m VE generates cluster tree!
1715 (D) One clique for each factor used/generated
Edge :J iff_iused to generate_f_j
“‘Message” from i to j generated when
| [ J23 (*.¢) marginalizing a variable from f

Tree because factors only used once

m Proposition:
“Message” 5 fromi toj

_® Scope[Sij] c JSij
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