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Inference in BNs hopeless?
" JEE
m |n general, yes!

m |In practice
Exploit structure

Many effective approximation algorithms (some with
guarantees)

m For now, we’ll talk about exact i ce
Approximate inference later this semester
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General probabilistic mferenc
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Probabilistic inference example
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Inference seems exponential in number of variables!




Fast probabilistic inference example — Variable elimination
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Understanding variable elimination —

. gexploiting distributivity
GO C T




Understanding variable elimination —

. grder can make a HUGE difference
&

Understanding variable elimination —

. galermediate results
OY
(ome)

Intermediate results are probability distributions




Understanding variable elimination —

B Angthﬁr gxamglﬁ

==

Pruning irrelevant variables
" I

=

Prune all non-ancestors of query variables
More generally: Prune all nodes not on active
trail between evidence and query vars
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Variable elimination algorithm
* JE
Given a BN and a query P(X|e) « P(X,e)
Instantiate evidence e
Prune non-active vars for {X,e}
Choose an ordering on variables, e.g., X,, ..., X,
Initial factors {f,,....f.}: f, = P(Xj|Pay;) (CPT for X))
Fori=1ton, If X; &{X,E}

Collect factors fy,...,f, that include X

Generate a new factor by ellmmatlng X; from these factors

Q—ZHfJ
X; j=1

Variable X, has been eliminated!
Normalize P(X,e) to obtain P(X|e)
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IMPORTANT!!!

Operations on factors =
"
9=7>. H fj
X; j=1

Multiplication:
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Operations on factors Q

" S =
k
g=2_ 114
X;j=1

Marginalization:

Complexity of VE — First analysis
" S
m Number of multiplications:

m Number of additions:




Complexity of variable elimination —
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Variable elimination order:
Start from “leaves” inwards:

Start from skeleton!

Choose a “root”, any node

Find topological order for root
Eliminate variables in reverse order
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Linear in CPT sizes!!! (versus exponential)
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What you need to know about

infﬁrﬁnge thus far

m  Types of queries
probabilistic inference
most probable explanation (MPE)
maximum a posteriori (MAP)

= MPE and MAP are truly different (don’t give the same answer)

m  Hardness of inference

Exact and approximate inference are NP-hard

MPE is NP-complete
MAP is much harder (NPPP-complete)

m Variable elimination algorithm
Eliminate a variable:

= Combine factors that include this var into single factor

= Marginalize var from new factor

Efficient algorithm (“only” exponential in induced-width, not number of variables)
= If you hear: “Exact inference only efficient in tree graphical models”
= You say: “No!!! Any graph with low induced width”
= And then you say: “And even some with very large induced-width” (next week with context-specific independence)

m  Elimination order is important!
NP-complete problem
Many good heuristics
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Announcements
= JE
m Recitation tomorrow
Be therel!!

m Homework 3 out later today

What’s next
" JE
m Thus far: Variable elimination

(Often) Efficient algorithm for inference in graphical
models

m Next: Understanding complexity of variable
elimination
Will lead to cool junction tree algorithm later
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Complexity of variable elimination —

. Graﬁhs with IooEs

Moralize graph:
Connect parents

into a clique and
remove edge directions

Connect nodes that appear together in an initial factor

10-708 — @Carlos Guestrin 2006-2008 19

Eliminating a node — Fill edges

Eliminate variable
add Fill Edges:

Connect neighbors
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The induced graph I for elimination order <

I N d u Ced g ra p has an edge X, — X; if X; and X; appear together
in a factor generated by VE for elimination order <
on factors F

Elimination order:
{C,D,S,I,L,H,J,G}

Different elimination order can lead
to different induced graph

Elimination order:
{G,C,D,S,I,L,H,J}
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Induced graph and complexity of VE

| Read complexity from cliques in induced graph

m Structure of induced graph
encodes complexity of VEI!!

m Theorem:
Every factor generated by VE subset
of a maximal clique in I

For every maximal clique in I
corresponds to a factor generated by
VE

m Induced width (or treewidth)
Size of largest clique in Iz, minus 1

Minimal induced width — induced width
of best order -

Elimination order:
{C,D,I,S,L,H,J,G}
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Example: Large induced-width with

. gemall number of parents

Compact representation > Easy inference ®

CATeS GUesIn 2006-2
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Finding optimal elimination order

m Theorem: Finding best elimination
order is NP-complete:

Decision problem: Given a graph,
determine if there exists an elimination
order that achieves induced width < K

m Interpretation:
Hardness of finding elimination order in
addition to hardness of inference
Actually, can find elimination order in time
exponential in size of largest clique —

Elimination order: same complexity as inference
{C,D,I,.S,L,H,J,G}
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Induced graphs and chordal graphs

m Chordal graph:
Every cycle X; — X, — ... = X, — X, with
k = 3 has a chord
= Edge X, — X for non-consecutive i &
m Theorem:
Every induced graph is chordal

m “Optimal” elimination order easily
obtained for chordal graph
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Chordal graphs and triangulation
" JEE

m Triangulation: turning graph into chordal
graph
° m Max Cardinality Search:
Simple heuristic

o m [nitialize unobserved nodes X as

unmarked
= Fork=X|to1
° e X € unmarked var with most marked

neighbors
<(X) € k

CF D Mark X

o m Theorem: Obtains optimal order for
o chordal graphs
m Often, not so good in other graphs!
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Minimum fill/size/weight heuristics
" JEE

m  Many more effective heuristics
see reading
= Min (weighted) fill heuristic

D |
Often very effective
<

o m Initialize unobserved nodes X as
unmarked
‘ = Fork=1to|X]|

o o X € unmarked var whose elimination
adds fewest edges
<(X) €k

CF D Mark X
Add fill edges introduced by eliminating X

m Weighted version:
Consider size of factor rather than number
of edges
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Choosing an elimination order
* JEE
m Choosing best order is NP-complete
Reduction from MAX-Clique
m Many good heuristics (some with guarantees)

m Ultimately, can’t beat NP-hardness of inference

Even optimal order can lead to exponential variable
elimination computation

m In practice
Variable elimination often very effective

Many (many many) approximate inference approaches
available when variable elimination too expensive

Most approximate inference approaches build on ideas
from variable elimination
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