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Inference in BNs hopeless?
" J
m In general, yes!
Even approximate!
T

m In practice
Exploit structure

Many effective approximation algorithms (some with
guarantees)

m For now, we'll talk about exact inference
Approximate inference later this semester




General probabilistic mference
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Probabilistic inference example
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Inference seems exponential in number of variables!




Fast probabilistic inference example — Variable elimination

| (Potential for) Exponential reduction in computation! I FrmnA
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Understanding variable elimination —

Exploiting distributivity a (-4 “* *~c
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Understanding variable elimination —

_ . Order can make a HUGE difference
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Understanding variable elimination —
Intermediate results
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Intermediate results are probability distributions




Understanding variable elimination —

_ . Another example
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Pruning irrelevant variables
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Prune all non-ancestors of query variables
More generally: Prune all nodes not on active
trail between evidence and query vars
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Variable elimination algorithm

- e
Given a BN and a query P(X|e) o P(X,e)
Instantiate evidencee , M=t
Prune non-active vars for {X,e
Choose an ordering on variables, e.g., Xy, ..., X,
Initial factors {f,,....f.J: f, = P(X|Pay;) (CPT for X) i P;)
Fori=1ton, f X ¢{XE}e mushbr ¢limgrteh

Collect factors f,,...,f, that include X;

Generate a new factor by eliminating X; from these factors
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m Normalize P(X,e) to obtain P(X|e)
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Operations on factors @
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Complexity of VE — First analysis
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Complexity of variable elimination —
Poly)-tree graphs

Variable elimination order:

Start from “leaves” inwards:

» Start from skeleton!

* Choose a “root”, any node

* Find topological order for root

« Eliminate variables in reverse order
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Linear in CPT sizes!!! (versus exponential)

15

What you need to know about
inference thus far
JEN—

m  Types of queries
probabilistic inference
most probable explanation (MPE)
maximum a posteriori (MAP)
= MPE and MAP are truly different (don’t give the same answer)

m  Hardness of inference
Exact and approximate inference are NP-hard
MPE is NP-complete
MAP is much harder (NPPP-complete)

"
m [ Variable elimination algorithm
Eliminate a variable:
= Combine factors that include this var into single factor
= Marginalize var from new factor
Efficient algorithm (“only” exponential in induced-width, not number of variables)
= If you hear: “Exact inference only efficient in tree graphical models”
= You say: “No!!! Any graph with low induced width”
= __And then vo . “And even some with very large induced-width” (next week with context-specific independence)
] imination order is important!
NP-complete problem
Many good heuristics
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Announcements

m\ Recitation tomorrow
Be there!!

m Homework 3 out later today

What’s next
= JEE
m Thus far: Variable elimination

(Often) Efficient algorithm for inference in graphical
models

m Next: Understanding complexity of variable
elimination

Will lead to cool junction tree algorithm later
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Complexity of variable elimination —

Graﬁhs with loops
Moralize graph:
oty -

Connect parents
into a clique and
remove edge directions
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Eliminating a node — Fill edges
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The induced graph I, for elimination order <
I N d u Ced g ra p has an edge X, - X; if X; and X, appear together

in a factor generated by VE for elimination order <
. = on factors F
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Different elimination order can lead
to different induced graph
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Induced graph and complexity of VE

Read complexity from cliques in induced graph

u
m Structure of induced graph
encodes complexity of VE!!!

m Theorem:

Every factor generated by VE subset
of a maximal clique in I

For every maximal clique in I
corresponds to a factor generated by
VE

m Induced width (or treewidth)
Size of largest clique in I, minus 1

Minimal induced width — induced width
of best order <

Elimination order:
{C,D,I,S,L,H,J,G}

Example: Large induced-width with
small number of parents
"

Compact representation > Easy inference ®
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Finding optimal elimination order

m Theorem: Finding best elimination

order is NP-complete:

| Decision problem: Given a graph,
determine if there exists an elimination
order that achieves induced width < K

m Interpretation:
Hardness of finding elimination order in
addition to hardness of inference
Actually, can find elimination order in time
exponential in size of largest clique — same

Elimination order: complexity as inference
{C.D,I,S,LH,J,G}
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Induced graphs and chordal graphs

m Chordal graph:
Every cycle X, — X, — ... = X, — X, with
k = 3 has a chord
= Edge X, - X; for non-consecutive i & j
m Theorem:
Every induced graph is chordal

m “Optimal” elimination order easily
obtained for chordal graph




Chordal graphs and triangulation

m Triangulation: turning graph into chordal
graph
m Max Cardinality Search:
Simple heuristic

e ° m Initialize unobserved nodes X as
unmarked
m Fork=|X|to1
o X € unmarked var with most marked

o neighbors
<(X) € k
D

Mark X

o m Theorem: Obtains optimal order for
chordal graphs

m Often, not so good in other graphs!

Minimum fill/size/weight heuristics

m  Many more effective heuristics

[ |
see reading
CaD = Min (weighted) fill heuristic

Often very effective

° m [nitialize unobserved nodes X as
unmarked
- For k =1 to [X]

X € unmarked var whose elimination

adds fewest edges
<(X) € k
CF D Mark X
Add fill edges introduced by eliminating X

m Weighted version:

Consider size of factor rather than number
of edges




Choosing an elimination order
“ JEE
m Choosing best order is NP-complete
Reduction from MAX-Clique
m Many good heuristics (some with guarantees)

m Ultimately, can’t beat NP-hardness of inference

Even optimal order can lead to exponential variable
elimination computation

m In practice
Variable elimination often very effective

Many (many many) approximate inference approaches
available when variable elimination too expensive

Most approximate inference approaches build on ideas
from variable elimination




