

In general, yes! Even approximate! In practice Exploit structure Many effective approximation algorithms (some with guarantees) For now, we'll talk about exact inference Approximate inference later this semester

Variable elimination algorithm

- Instantiate evidence e , N= t
- Prune non-active vars for {X,e} ← CPT > IMPORTANT(N)F
- Choose an ordering on variables, e.g., X₁, ..., X_n
- Initial factors $\{f_1,...,f_n\}$: $f_i = P(X_i|\mathbf{Pa}_{X_i})$ (CPT for X_i)
- For i = 1 to n, If X_i ∉{X,E} ← must be eliminated
 - \Box Collect factors $f_1, ..., f_k$ that include X_i
 - $\hfill \square$ Generate a new factor by eliminating X_i from these factors

$$g = \sum_{X_i} \prod_{j=1}^{k} f_j$$

Uariable X_i has been eliminated! \nearrow Variable P(X,e) to obtain P(X|e)

- Normalize P(X,e) to obtain P(X|e)

Operations on factors h (A,B,C) = f, (AB). f2(B,C) A=1, B=1, C=1

0.6 x 0.3 = 0.18

Operations on factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

Marginalization:

$$g(\hat{A},\hat{C}) = \sum_{b} h(A,b,C)$$

Number of multiplications:

9= Z ff fi fix depends on Cj
fix depends on Cj
h (UC) Letable has de elements
h (UC) Letable has de elements
each require
m multiplies

1 in & # of

exponential in \$ # of vars in intermitiate factors

Announcements

- Recitation tomorrow
 - ☐ Be there!!
- Homework 3 out later today

10-708 - Carlos Guestrin 2006-200

17

What's next

- Thus far: Variable elimination
 - □ (Often) Efficient algorithm for inference in graphical models
- Next: Understanding complexity of variable elimination
 - □ Will lead to cool junction tree algorithm later

10-708 - Carlos Guestrin 2006-2008

18

Choosing an elimination order

- М
 - Choosing best order is NP-complete
 - □ Reduction from MAX-Clique
 - Many good heuristics (some with guarantees)
 - Ultimately, can't beat NP-hardness of inference
 - □ Even optimal order can lead to exponential variable elimination computation
 - In practice
 - □ Variable elimination often very effective
 - ☐ Many (many many) approximate inference approaches available when variable elimination too expensive
 - ☐ Most approximate inference approaches build on ideas from variable elimination

10-708 - Carlos Guestrin 2006-2008

29