Mean Field and Variational Methods finishing off

Graphical Models – 10708
Carlos Guestrin
Carnegie Mellon University

November 5th 2008

What you need to know so far

- P(xle) 2 17; Q;(xj) Goal:
- $Q_j(x_i) \sim p(x_j|e)$
- ☐ Find an efficient distribution that is close to posterior
- Distance:
 - ☐ measure distance in terms of KL divergence
- Asymmetry of KL:
 - \square D(p||q) $\neq D(q||p)$
- Computing right KL is intractable, so we use the reverse KL /

Reverse KL & The Partition Function

Back to the general case

- Consider again the defn. of D(q||p):
 - □ p is Markov net P_F

p(x) = 1 T $\varphi(C_{\varphi})$ maximize want to φ

- Theorem: In $Z = F[P_{\mathcal{F}}, Q] + D(Q||P_{\mathcal{F}})$
- where energy functional:

Understanding Reverse KL, Energy **Function & The Partition Function**

$$\ln Z = F[P_{\mathcal{F}}, Q] + D(Q||P_{\mathcal{F}}) \qquad F[P_{\mathcal{F}}, Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$$

■ Maximizing Energy Functional ⇔ Minimizing Reverse KL

D(411P) 70

■ Theorem: Energy Function is lower bound on partition function

F(PF,Q) + D(Q11PF) = log 2 log 2 7 F [PF,Q] what we maximize

□ Maximizing energy functional corresponds to search for tight lower bound on partition function

don't know how to compute 2, so we will try to find a lower bound

Structured Variational Approximate In $Z = F[P_{\mathcal{F}}, Q] + D(Q||P_{\mathcal{F}})$ $F[P_{\mathcal{F}}, Q] = \sum\limits_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$

Inference

- Pick a family of distributions Q that allow for exact inference
- \Box e.g., fully factorized (mean field) $\mathcal{L}(x) = t_j \left(\chi_j \right)$
- For mean field

max Flf , (Q1, ..., Qn) subject to Qj(xj)>0 $z_iQ_i(x_i)=1$

Optimization for mean field

$$egin{array}{ll} \max_{Q} F[P_{\mathcal{F}},Q] &=& \max_{Q} \sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi] + \sum_{j} H_{Q_{j}}(X_{j}) \ &orall i, \sum_{x_{t}} Q_{i}(x_{i}) = 1 \end{array}$$

- Constrained optimization, solved via Lagrangian multiplier

 - □ Take derivative, set to zero
- **Theorem**: Q is a stationary point of mean field approximation iff for each *i*:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

10-708 - @Carlos Guestrin 2006-2008

.

Understanding fixed point equation

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

10-708 - @Carlos Guestrin 2006-2008

Δ

Simplifying fixed point equation

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

Q_i only needs to consider factors that intersect X

■ **Theorem**: The fixed point:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

is equivalent to:
$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi_j: X_i \in \mathsf{Scope}[\phi_j]} E_Q[\ln \phi_j(\mathbf{U}_j, x_i)] \right\}$$

 $\hfill \square$ where the $\text{Scope}[\varphi_i]$ = $\textbf{U}_i \cup \{X_i\}$

- Set all vars to unprocessed
- Pick unprocessed var X_i
 - □ update Q_i:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi_j: X_i \in \mathsf{Scope}[\phi_j]} E_Q[\ln \phi_j(\mathbf{U}_j, x_i)] \right\}$$

- □ set var i as processed
- □ if Q_i changed
 - set neighbors of X_i to unprocessed
- Guaranteed to converge

More general structured approximations

- Mean field very naïve approximation
- Consider more general form for Q
 - □ assumption: exact inference doable over Q

$$\psi_j(\mathbf{c_j}) \propto \exp\left\{\sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid \mathbf{c_j}] - \sum_{\psi \in \mathcal{Q} \backslash \{\psi_j\}} E_Q[\ln \psi \mid \mathbf{c_j}]\right\}$$

Very similar update rule

Computing update rule for general case

 $\psi_j(\mathbf{c_j}) \propto \exp\left\{\sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid \mathbf{c_j}] - \sum_{\psi \in \mathcal{Q} \backslash \{\psi_j\}} E_Q[\ln \psi \mid \mathbf{c_j}]\right\} \text{ Conficulty}$

Consider one φ:

Structured Variational update requires inference

_requires inference
$$\psi_j(\mathbf{c_j}) \propto \exp\left\{\sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid \mathbf{c_j}] - \sum_{\psi \in \mathcal{Q} \setminus \{\psi_j\}} E_Q[\ln \psi \mid \mathbf{c_j}]\right\}$$

- Compute marginals wrt Q of cliques in original graph and cliques in new graph, for all cliques
- What is a good way of computing all these marginals?
- Potential updates:
 - $\ \square$ sequential: compute marginals, update ψ_i , recompute marginals
 - $\ \square$ parallel: compute marginals, update all ψ 's, recompute marginals

10-708 - @Carlos Guestrin 2006-2008

15

What you need to know about variational methods

- Structured Variational method:
 - □ select a form for approximate distribution
 - □ minimize reverse KL
- Equivalent to maximizing energy functional
 - searching for a tight lower bound on the partition function
- Many possible models for Q:
 - □ independent (mean field)
 - □ structured as a Markov net
 - cluster variational
- Several subtleties outlined in the book

10-708 – ©Carlos Guestrin 2006-2008

Belief Propagation on Tree Pairwise Markov Nets

- □ no need to create a junction tree
- Message passing:

- More general equation:
 - \square N(i) neighbors of i in pairwise MN

$$\delta_{i \to j}(X_j) = \sum_{x_i} \phi_i(x_i) \phi_{ij}(x_i, X_j) \prod_{k \in \mathcal{N}(i) - j} \delta_{k \to i}(x_i)$$

■ **Theorem**: Converges to true probabilities:

Loopy Belief Propagation on

Pairwise Markov Nets

$$\delta_{i \to j}(X_j) = \sum_{x_i} \phi_i(x_i) \phi_{ij}(x_i, X_j) \prod_{k \in \mathcal{N}(i) - j} \delta_{k \to i}(x_i)$$

- What if we apply BP in a graph with loops?
 - □ send messages between pairs of nodes in graph, and hope for the best
- What happens?
 - evidence goes around the loops multiple times
 - □ may not converge
 - □ if it converges, usually overconfident about probability values
- But often gives you reasonable, or at least useful answers
 - especially if you just care about the MPE rather than the actual probabilities

- Numerical problem:
 - messages < 1 get multiplied together as we go around the loops
 - □ numbers can go to zero
 - □ normalize messages to one:

$$\delta_{i \to j}(X_j) = \frac{1}{Z_{i \to j}} \sum_{x_i} \phi_i(x_i) \phi_{ij}(x_i, X_j) \prod_{k \in \mathcal{N}(i) - j} \delta_{k \to i}(x_i)$$

- \Box $Z_{i\rightarrow i}$ doesn't depend on X_i , so doesn't change the answer
- Computing node "beliefs" (estimates of probs.):

$$\hat{P}(X_i) = \frac{1}{Z_i} \phi_i(X_i) \prod_{k \in \mathcal{N}(i)} \delta_{k \to i}(X_i)$$

10-708 - @Carlos Guestrin 2006-2008

Convergence

r,

$$\widehat{P}(X_i) = \frac{1}{Z_i} \phi_i(X_i) \prod_{k \in \mathcal{N}(i)} \delta_{k \to i}(X_i)$$

■ If you tried to send all messages, and beliefs haven't changed (by much) → converged

10-708 - @Carlos Guestrin 2006-200

Loopy BP in Factor graphs

- What if we don't have pairwise Markov nets?
- A B C D E
- 1. Transform to a pairwise MN
- 2. Use Loopy BP on a factor graph
- ABC ABD BDE CDE

- Message example:
 - from node to factor:
 - from factor to node:

10-708 - @Carlos Guestrin 2006-2008

2!

Loopy BP in Factor graphs

- From node i to factor j:
 - □ F(i) factors whose scope includes X_i

- ABC ABD BDE CDE
- From factor j to node i:
 - $\quad \ \ \, \Box \quad \, \mathsf{Scope}[\varphi_j] = \mathbf{Y} \cup \{\mathsf{X}_i\}$

$$\delta_{j \to i}(X_i) \propto \sum_{\mathbf{y}} \phi_j(X_i, \mathbf{y}) \prod_{X_k \in \mathsf{Scope}[\phi_j] - X_i} \delta_{k \to j}(x_k)$$

- Belief:
 - □ Node:
 - Factor:

10-708 – ©Carlos Guestrin 2006-200

What you need to know about loopy BP

- Application of belief propagation in loopy graphs
- Doesn't always converge
 - □ damping can help
 - □ good message schedules can help (see book)
- If converges, often to incorrect, but useful results
- Generalizes from pairwise Markov networks by using factor graphs

10-708 - @Carlos Guestrin 2006-2008