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What you need to know so far
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Find an efficient distribution that is close to posterior

m Distance:
measure distance in terms of KL divergence

m Asymmetry of KL:
D(plia) @
N Computing”ri ht KL is intractable, so we use the
reverse KL

Reverse KL & The Partitior
. Back to the ﬂeneral case

m Consider again the defn. of D(q||p):
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m Theorem: InZ = F[Pr, Q]+ D(Q||PF)
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Understanding Reverse KL, Energy
Function & The Partition Function

In}\Z :9F[Pf, Ql + }!(QHPf) F[Pr,Ql= Y Egling] + Ho(X)
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m  Maximizing Energy Functional <« Minimizing Reverse KL
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m Theorem: Energy{énction is lower bound on partition function
Elee, @) £ D(QlPe) = 103%
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Maximizing energy functional corresponds to search for tight lower bound on
partition function -

V(or\/k oy L\DWJ@ Cow\é)m\L g/ §o e \V“((L
W‘j h fm)\ a lower Speqd

Structured Variational Approximate
InZ = F[Pr, Q] + D(Q||PF)

. Inference FIPr.Ql = Y Egling] + Ho(X)
peF

m Pick a family of distributions Q that allow for exact
inference
e.g., fully factorized (mean field) %QM = ﬁ Qj (I)

= Find QEQ that maximizes FlFr.Ql < !(ﬁg

m For mean field
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Optimization for mean field

max F[Pr,Q] = max Y Egllngl+ Y He,(X;)
Q Q jer ]

Vi, Z QI(.’L‘Z) =1

T
m Constrained optimization, solved via Lagrangian multiplier
3 A, such that optimization equivalent to:

Take derivative, set to zero

m Theorem: Q is a stationary point of mean field approximation iff for each i:

Qi(z;) = %exp{ > Egling| wi]}

i bEF
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Understanding fixed point equation
" S
Qi(x;) = %GXD{ > Egling| xi]}

i bEF
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Simplifying fixed point equation
" JEE
Qi(x;) = ;GXD{ > Egling| wi]}

i GEF

Q, only needs to consider factors

B} ;ha; i fersect X-I

m Theorem: The fixed point:

Qute) = %exp{ > Eqling| mi]}

i GEF

is equivalent to:

Qi(x;) = Zi exp { > Eglin¢;(U;;, wi)]}

g ¢;:X;€SCope(s;]

where the Scope[¢;] = U; U {X}
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There are many stationary points!
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Figure11.18 Anexample of a multi-modal mean field energy functional landscape. In
this network, P(a,b) = 0.2% —¢ifa # band ¢if a = b. The axes correspond to the mean
field marginal for A and B and the contours show equi-values of the energy functional.
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Very simple approach for fing

. Que stationary point

m Initialize Q (e.g., randomly or smartly)
m Set all vars to unprocessed
m Pick unprocessed var X;
update Q;:
1
Qi(x;) = 7, &xP { > Eglin¢;(U;;, wi)]}

g ¢;:X;€SCope(s;]

set var i as processed
if Q; changed
= set neighbors of X; to unprocessed
m Guaranteed to converge
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More general structured approations
" S

m Mean field very naive approximation
m Consider more general form for Q

assumption: exact inference doable over Q

m Theorem: stationary point of energy functional:

'lﬁJ(CJ) X exp{ Z EQ[In ¢ | C_]] — Z EQ[“‘]’L& | CJ]}
pEF veQ\{¢;}

m Very similar update rule

Computing update rule for general case
@

¢j<cj>o<exp{zEQ[ln¢|cj1— > EQ[lnwcj]}
oeF Ye\{¢;}

m Consider one ¢:
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Structured Variational update

I inference
Pi(cy) xexpq > Egling|cl— > EQ[|n¢|cj]}
deF YeQ\{v;}

m  Compute marginals wrt Q of cliques in original graph and cliques in
new graph, for all cliques

m What is a good way of computing all these marginals?

m Potential updates:
sequential: compute marginals, update ;, recompute marginals

parallel: compute marginals, update all y’s, recompute marginals
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What you need to know about

varia}ional methods

m Structured Variational method:
select a form for approximate distribution
minimize reverse KL

m Equivalent to maximizing energy functional
searching for a tight lower bound on the partition function

m Many possible models for Q:
independent (mean field)
structured as a Markov net
cluster variational

m Several subtleties outlined in the book
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Readings:
K&F: 10.2, 10.3

Loopy Belief Propagation
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Recall message passing over

. '|unction trees

m Exact inference:
generate a junction tree
message passing over
neighbors
inference exponential in size
of clique

B-0-0r¢
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Belief Propagation on Tree

B Pairwiﬁg Markgv Nets

m Tree pairwise Markov net is a tree!!l! ©
no need to create a junction tree
m Message passing:

m  More general equation:
N(i) — neighbors of j in pairwise MN

6ij (X)) = > i(x)dij(xi, X5) [ i)
i kEN (i) —j

m Theorem: Converges to true probabilities:
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Loopy Belief Propagation on

. Bainwise Markov Nets

i kEN (i)—j
m What if we apply BP in a graph with loops?

send messages between pairs of nodes in graph, and hope
for the best

m  What happens?
evidence goes around the loops multiple times
may not converge
if it converges, usually overconfident about probability values

m But often gives you reasonable, or at least useful answers

especially if you just care about the MPE rather than the
actual probabilities
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@
More details on Loopy BPe»

= Numerical problem:

messages < 1 get multiplied together
as we go around the loops

numbers can go to zero
normalize messages to one:

1
6i—j(X;) = 7 > di(@)dij(@i, X5) [ Ok—ilas)
Y E keN (i)—j

Z,_,;doesn’t depend on X, so doesn’t change the answer

m  Computing node “beliefs” (estimates of probs.):
1

P(X;) = 7

(X)) I 0p—i(Xi)
keN (i)
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An example of running loopy BP

True posterior

P(a’)
]

10 15 20
Iteration #
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Convergence

PO = o) TT dri(X)
g keN (i)

m |f you tried to send all messages, and beliefs
haven’t changed (by much) — converged
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(Non-)Convergence of Loopy BP

" JEE
m  Loopy BP can oscillate!!!
oscillations can small
oscillations can be really bad!

nnnnnnn

m  Typically,

if factors are closer to uniform, loopy does well

0.9|
(converges) o
if factors are closer to deterministic, loopy doesn’t
behave well g%

o
=3

% converge

m  One approach to help: damping messages 08
new message is average of old message and 04
new one: 0
0 0.2 04 06 08 1
range of prior
often better convergence /;,

= but, when damping is required to SO
get convergence, result often bad

10708 - ©Garos Guestin 20062005 I7@PNS from Murphy et al. '99
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Loopy BP in Factor graphs
" JE—
R OV RORORORG

Transform to a pairwise MN
Use Loopy BP on a factor
graph |ABc| [ABD| | BDE| | CDE]

m  Message example:
from node to factor:

from factor to node:
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Loopy BP in Factor graphs
" e
. ®©© 0 ©
includes X;

6imi(Xi) o T dp—i(X0)
keF(i)—j

|ABc| | ABD| |BDE| [ CDE|

m  From factor j to node /:
Scope[p] = YU{X}

6j—i(X;) o< Y 9i(X5,y) II Op—j(xr)
y XpeScope[¢;]-X;

m Belief:
Node:

Factor:
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What you need to know about

. Joooy BP

m Application of belief propagation in loopy graphs

m Doesn’t always converge
damping can help
good message schedules can help (see book)

m If converges, often to incorrect, but useful results

m Generalizes from pairwise Markov networks by
using factor graphs
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