

Understanding Reverse KL, Energy

Function & The Partition Function
$$\ln Z = F[P_{\mathcal{F}}, Q] + D[Q||P_{\mathcal{F}})$$

$$F[P_{\mathcal{F}}, Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$$

■ Maximizing Energy Functional ⇔ Minimizing Reverse KL

■ Theorem: Energy Function is lower bound on partition function

☐ Maximizing energy functional corresponds to search for tight lower bound on

don't know how to compute 2, so we will try to find a buir bound

Structured Variational Approximate $\ln Z = F[P_{\mathcal{F}}, Q] + D(Q||P_{\mathcal{F}})$ $F[P_{\mathcal{F}}, Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$ <u>Inference</u>

- Pick a family of distributions Q that allow for exact inference
 - \Box e.g., fully factorized (mean field) $\mathcal{L}(x) = t_j \mathcal{L}(x_j)$
- For mean field

nean field

max Flf
$$(Q_1,...,Q_n)$$
 Q_j

Subject to $Q_j(x_j) > 0$
 Q_j
 Q_j

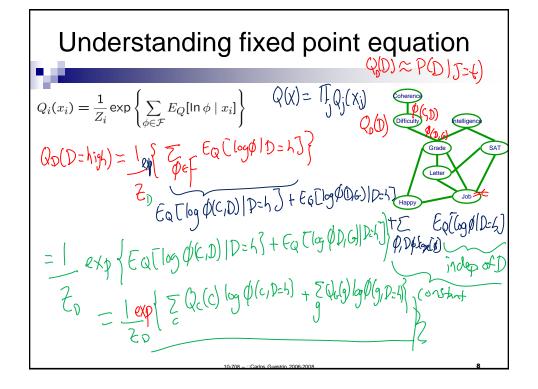
Optimization for mean field

$$egin{array}{lll} \max_{Q} F[P_{\mathcal{F}},Q] &=& \max_{Q} \sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi] + \sum_{j} H_{Q_{j}}(X_{j}) \ &orall_{i} \sum_{Q} Q_{i}(x_{i}) = 1 \end{array}$$

- Constrained optimization, solved via Lagrangian multiplier
- **Theorem**: Q is a stationary point of mean field approximation iff for each i:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

10-708 - Carlos Guestrin 2006-200



Q_i only needs to consider factors that intersect X_i

■ **Theorem**: The fixed point:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

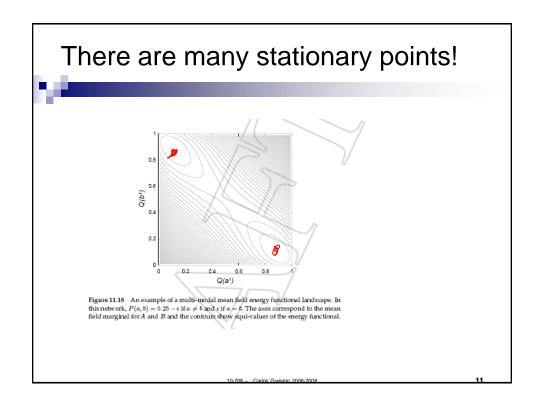
is equivalent to:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi_j: X_i \in \mathsf{Scope}[\phi_j]} E_Q[\ln \phi_j(\mathbf{U}_j, x_i)] \right\}$$

□ where the Scope[ϕ_j] = \mathbf{U}_j $\{X_i\}$

10-708 - Carlos Guestrin 2006-2008

10



Very simple approach for finding one stationary point



- Set all vars to unprocessed
- Pick unprocessed var X_i
 - □ update Q_i:

- set var i as processed
- □ if Q_i changed
 - set neighbors of X_i to unprocessed
- Guaranteed to converge

More general structured approximations

- Mean field very naïve approximation () = ↑ 0 () = ↑ 0 ()

Consider more general form for Q

$$Q(x) = \frac{1}{z} \prod_{j} \psi_{j}(c_{j})$$

□ assumption: exact inference doable over Q

■ **Theorem**: stationary point of energy functional:

$$\psi_j(\mathbf{c_j}) \propto \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid \mathbf{c_j}] - \sum_{\psi \in \mathcal{Q} \backslash \{\psi_j\}} E_Q[\ln \psi \mid \mathbf{c_j}] \right\}$$

Very similar update rule

What you need to know about variational methods

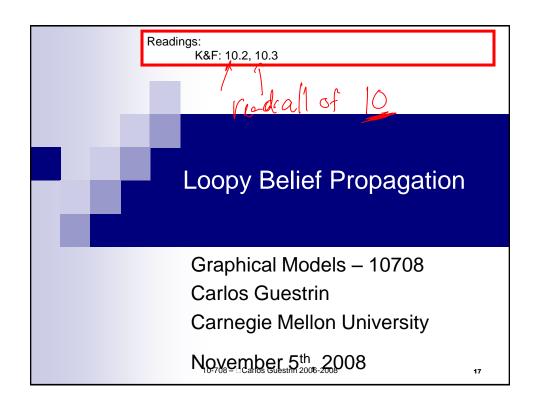
- Structured Variational method:
 - □ select a form for approximate distribution
 - □ minimize reverse KL
- Equivalent to maximizing energy functional
 - □ searching for a tight lower bound on the partition function

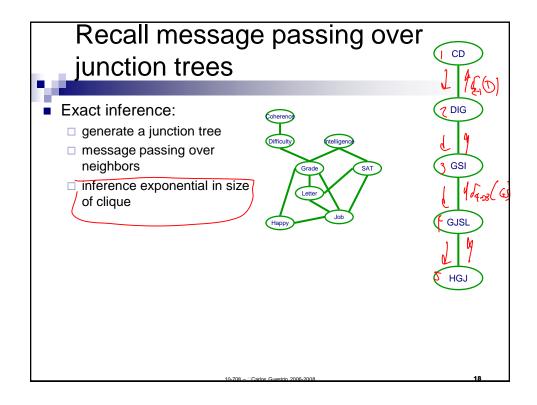
log 2

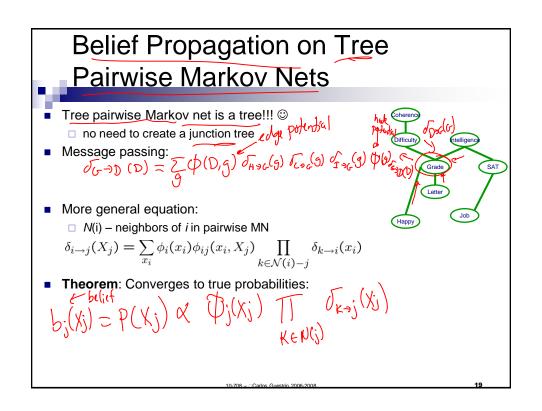
- Many possible models for Q:
 - □ independent (mean field)
 - □ structured as a Markov net
 - cluster variational
- Several subtleties outlined in the book

10-708 - Carlos Guestrin 2006-2008

16







Loopy Belief Propagation on Pairwise Markov Note

Pairwise Markov Nets
$$\delta_{i\to j}(X_j) = \sum_{x_i} \phi_i(x_i) \phi_{ij}(x_i, X_j) \prod_{k\in\mathcal{N}(i)-j} \delta_{k\to i}(x_i)$$

- What if we apply BP in a graph with loops?
 - send messages between pairs of nodes in graph, and hope for the best
- What happens?
 - evidence goes around the loops multiple times
 - □ may not converge
 - □ if it converges, usually overconfident about probability values
- But often gives you reasonable, or at least useful answers
 - especially if you just care about the MPE rather than the actual probabilities

10-708 - Carlos Guestrin 2006-2008

20

More details on Loopy BP

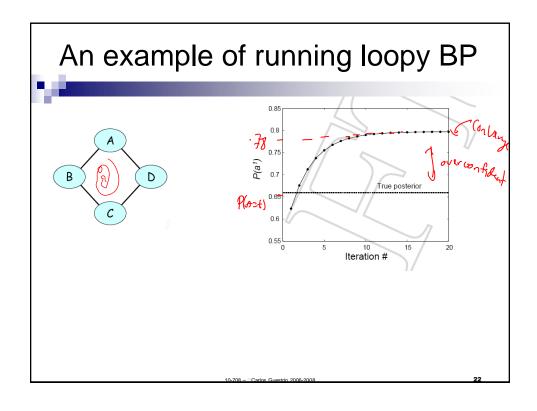
- Numerical problem:
 - messages < 1 get multiplied together as we go around the loops
 - □ numbers can go to zero
 - □ normalize messages to one:

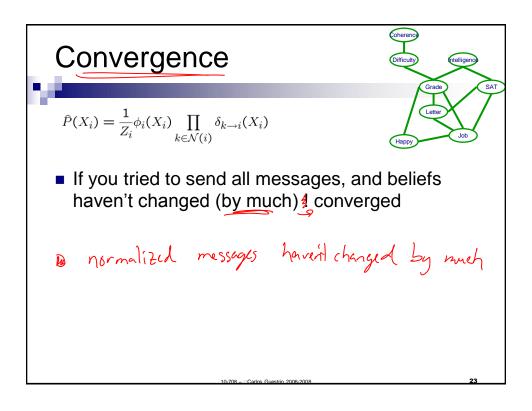
$$\delta_{i \to j}(X_j) = \frac{1}{Z_{i \to j}} \sum_{x_i} \phi_i(x_i) \phi_{ij}(x_i, X_j) \prod_{k \in \mathcal{N}(i) = j} \delta_{k \to i}(x_i)$$

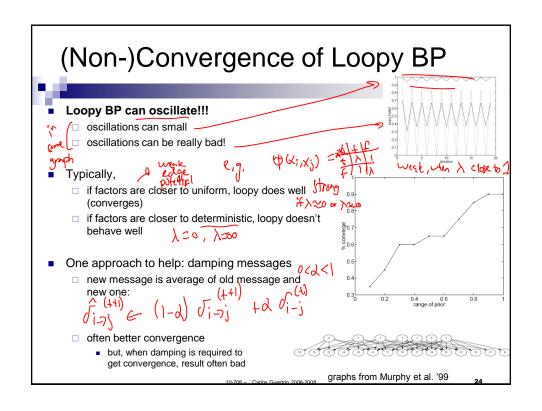
- □ Z_{**} doesn't depend on X_j, so doesn't change the answer
- Computing node "beliefs" (estimates of probs.):

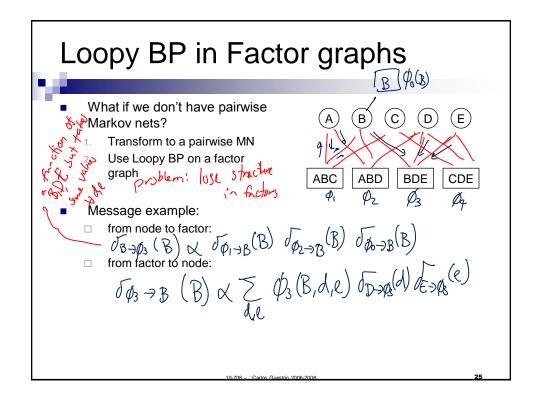
$$\oint_{\Gamma} \left(\chi_i \right) = \hat{P}(X_i) = \frac{1}{Z_i} \phi_i(X_i) \prod_{k \in \mathcal{N}(i)} \delta_{k \to i}(X_i)$$

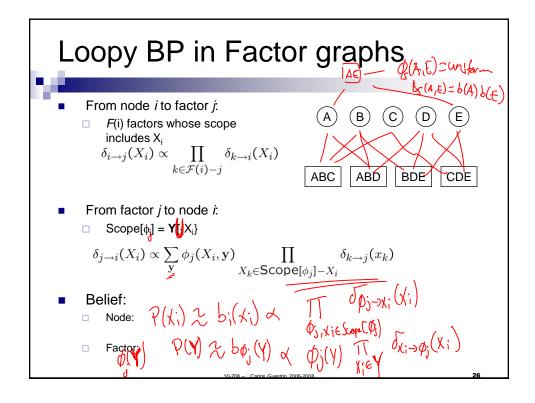
10-708 - Carlos Guestrin 2006-2008











What you need to know about <u>loopy</u> BP

- Application of belief propagation in loopy graphs
- Doesn't always converge
 - □ damping can help
 - □ good message schedules can help (see book)

one good way, always send mesage that changed the most since previous Hearts

- Generalizes from pairwise Markov networks by using factor graphs