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What you need to know so far
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m Goal:
Find
m Distance:
measure distance in terms of KL divergence

m Asymmetry of KL
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, = Computing Mtable, so we use the
) reverse KL

Back to the general case
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Understanding Reverse KL, Energy

Function & The Partition Function
In\Z = 9F[Pf, Ql + 5(Q||Pf) FlPr Q) = ¢ZfEQ[In¢] + Ho(X)

m  Maximizing Energy Functional < Minimizing Reverse KL
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m Theorem: Energy{t/unction is lower bound on partition function
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Maximizing energy functional corresponds to search for tight lower bound on
partition function -
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Structured Variational Approximate
InZ = F[Pr, Q] + D(Q||Pr)

. _Inference FIPF Q1 = 3 Eoliné] + Ho(X)
oeF —m—
m Pick a family of distributions Q that allow for exact
inference

e.g., fully factorized (mean field) () = ﬁ Qﬁ (%)
» Find QBQ that maximizes FIPrQl < IOJZ

m For mean field
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Optimization for mean field

" JE
max F[Pr,Q] = max Y Eg[ln¢|+ Y Hq,(X;)
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m Constrained optimization, solved via Lagrangian multiplier
§ A, such that optimization equivalent to:
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Understanding fixed point equation
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Q, only needs to consider factors
that intersect X,
= SN

m Theorem: The fixed point:
i GEF

is equivalent to:

Qi(x;) = Zl exp { 3 Eglin ¢j(Uj=~Tz’)]}

i~ v b X;e5cope[s)]

where the Scope[¢] = U{] {X}

There are many stationary points!
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Figure11.18  An example of a multi-modal mean field energy functional landscape. In
this network, F(a, b) = 0.2% —eife # b and €if @ = b The axes correspond to the mean
field marginal for 4 and B and the contours show equi-values of the energy functional.
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Very simple approach for flndlng

one statlonary pomt

m |nitialize Q (e.g., randomly or smartly)
m Set all vars to unprocessed
m Pick unprocessed var X;

update Q;:

|
Q(ﬁj%)ézl exp { > Ecé?'” (U, z;)] }

b X;e5cope[s)]

set var i as processed
if Q; changed
= set neighbors of X, to unprocessed
m Guaranteed to converge
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More general structured approxiations
" S
m Mean field very naive approximation Q(S( HQJ

m Consider more general form for Q
Q&) = ? T G (e

assumption: exact inference doable over Q

m Theorem: stationary point of energy functional:
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m Very similar update rule
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What you need to know about
variational methods
" SN

m Structured Variational method:
select a form for approximate distribution
minimize reverse KL
m Equivalent to maximizing energy functional
searching for a tight lower bound on the partition function )Oﬁ Z

m Many possible models for Q:
independent (mean field)
structured as a Markov net
cluster variational

m Several subtleties outlined in the book
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Readings:
K&F:10.2,10.3
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Recall message passing over

'|unction trees

m Exact inference:
generate a junction tree

message passing over
neighbors

inference exponential in size
of clique

Belief Propagation on Tree
Pairwise Markov Nets
" A
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no need to create a ]UﬂCtIOﬂ tree Mﬁ
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m Message passing: __
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m  More general equation:
N(i) — neighbors of i in pairwise MN
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Loopy Belief Propagation on
Pairwise Markov Nets
"

6ii(X5) =3 i(e)pij(zi, X5) [ Sp—i(d)
Ti keEN(i)—j
= What if we apply BP in a graph with loops?

send messages between pairs of nodes in graph, and hope
for the best

m What happens?
evidence goes around the loops multiple times

may not converge

if it converges, usually overconfident about probability values

m But often gives you reasonable, or at least useful answers

especially if you just care about the MPE rather than the
actual probabilities
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m  Numerical problem:

messages < 1 get multiplied together
as we go around the loops

numbers can go to zero
normalize messages to one:
malize me
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Zyg,doesn’t depend on X;, so doesn’t change the answer JPQQ"
i*:?‘) /
m Computing node “beliefs” (estimates of probs.): B
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An example of running loopy BP

r @, 4@@
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Iteration #
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Convergence
" JEE

1
E@:(Xi) I &ri(X)
i kEN (i)

P(X)) =

m |f you tried to send all messages, and beliefs
haven’t changed (by much)_égconverged
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(Non-)Convergence of Loopy BP
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m Loopy BP can oscillate!!! A AAAAAANAT
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" oscillations can small / s YV VY
et |1 oscillations can be really bad! by
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if factors are cld?er to uniform, loopy does well &'m’\j 09
(converges) EN0 o N

if factors are closer to deterministic, loopy doesn’t .
behave well ~q o e
TR
m  One approach to help: damping messages 0¢d<\ 0s
new message is average of old message and ) 04
new one: +"| d“(f*’ 7 I o

A (4 ;e of pror
e Ve (1-d) dis) =)

g

2 €
often better convergence

= but, when damping is required to
get convergence, result often bad
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. graphs from Murphy et al. '99 o

Loopy BP in Factor graphs
" (3100

m  Whatif we don’t have pairwise
$PMarkov nets? @ @ @ @

\'é?x Transform to a pairwise MN 4}(4_’ J \
SN 3 Use Loopy BP on a factor 1, 7
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Loopy BP in Factor gr%pﬁggmjwh
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includes X;
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m  From factor j to node i
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What you need to know about

. 490Dy BP

m Application of belief propagation in loopy graphs
; —— ——
m Doesn’t always converge
damping can help
good message schedules can help (see book)
Ono_ Cjw& L\,gy , C\l(A/ng scrw{ WSSa?X #‘cﬂl d‘a"‘ﬂ‘”L 'J'Z\L %54

. Sin ot JFadscr
m If converges, often to incorrect, but useful %sullthM

m Generalizes from pairwise Markov networks by(
using factor graphs
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