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Normalization for computing 
probabilities 

  To compute actual probabilities, must compute 
normalization constant (also called partition function) 

  Computing partition function is hard! ! Must sum over 
all possible assignments 
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Factorization in Markov networks 

  Given an undirected graph H over variables 
X={X1,...,Xn} 

  A distribution P factorizes over H if 9  
  subsets of variables D1⊆X,…, Dm⊆X, such that the Di are 

fully connected in H 
  non-negative potentials (or factors) φ1(D1),…, φm(Dm) 

  also known as clique potentials 
  such that  

  Also called Markov random field H, or Gibbs 
distribution over H 
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Global Markov assumption in 
Markov networks 

  A path X1 – … – Xk is active when set of variables 
Z are observed if none of Xi 2 {X1,…,Xk} are 
observed (are part of Z)  

  Variables X are separated from Y given Z in 
graph H, sepH(X;Y|Z), if there is no active path 
between any X2X and any Y2Y given Z 

  The global Markov assumption  for a Markov 
network H is 
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The BN Representation Theorem 

Joint probability 
distribution: Obtain 

If conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 

Important because:  
Independencies are sufficient to obtain BN structure G 

If joint probability 
distribution: Obtain 

Then conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 

Important because:  
Read independencies of P from BN structure G 
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Markov networks representation Theorem 1 

  If you can write distribution as a normalized product of 
factors ) Can read independencies from graph 

Then H is an I-map for P 
If joint probability 

distribution P: 
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What about the other direction for Markov 
networks ? 

  Counter-example: X1,…,X4 are binary, and only eight assignments 
have positive probability: 

  For example, X1⊥X3|X2,X4: 
  E.g., P(X1=0|X2=0, X4=0) 

  But distribution doesn’t factorize!!!  

If H is an I-map for P Then 
joint probability 
distribution P: 
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Markov networks representation Theorem 2 
(Hammersley-Clifford Theorem) 

  Positive distribution and independencies ) P factorizes 
over graph 

If H is an I-map for P 
and  

P is a positive distribution 
Then 

joint probability 
distribution P: 
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Representation Theorem for 
Markov Networks 

If H is an I-map for P 
and  

P is a positive distribution 
Then 

Then H is an I-map for P 
If joint probability 

distribution P: 

joint probability 
distribution P: 
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Completeness of separation in 
Markov networks 

  Theorem: Completeness of separation 
 For “almost all” distributions that P factorize over Markov 

network H, we have that I(H) = I(P) 
  “almost all” distributions: except for a set of measure zero of 

parameterizations of the Potentials (assuming no finite set of 
parameterizations has positive measure) 

  Analogous to BNs 
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What are the “local” independence 
assumptions for a Markov network? 

  In a BN G: 
  local Markov assumption: variable independent of 

non-descendants given parents  
  d-separation defines global independence 
  Soundness: For all distributions:   

  In a Markov net H: 
  Separation defines global independencies 
  What are the notions of local independencies? 
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Local independence assumptions 
for a Markov network 

  Separation defines global independencies 

  Pairwise Markov Independence: 
  Pairs of non-adjacent variables A,B are independent given all 

others 

  Markov Blanket:  
  Variable A independent of rest given its neighbors 

T1 

T3 T4 

T5 T6 

T2 

T7 T8 T9 
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Equivalence of independencies in 
Markov networks 

  Soundness Theorem: For all positive distributions P, 
the following three statements are equivalent: 
 P entails the global Markov assumptions 

 P entails the pairwise Markov assumptions 

 P entails the local Markov assumptions (Markov blanket) 
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Minimal I-maps and Markov 
Networks 

  A fully connected graph is an I-map 
  Remember minimal I-maps? 

  A “simplest” I-map ! Deleting an edge makes it no longer an I-map  

  In a BN, there is no unique minimal I-map 

  Theorem: For positive distributions & Markov network, minimal I-map is 
unique!! 

  Many ways to find minimal I-map, e.g., 
  Take pairwise Markov assumption: 
  If P doesn’t entail it, add edge: 
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How about a perfect map? 

  Remember perfect maps? 
  independencies in the graph are exactly the same as those in P 

  For BNs, doesn’t always exist 
  counter example: Swinging Couples 

  How about for Markov networks? 
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Unifying properties of BNs and MNs 

  BNs: 
  give you: V-structures, CPTs are conditional probabilities, can 

directly compute probability of full instantiation 
  but: require acyclicity, and thus no perfect map for swinging 

couples 

  MNs: 
  give you: cycles, and perfect maps for swinging couples 
  but: don’t have V-structures, cannot interpret potentials as 

probabilities, requires partition function 

  Remember PDAGS??? 
  skeleton + immoralities 
  provides a (somewhat) unified representation 
  see book for details 
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What you need to know so far 
about Markov networks 

  Markov network representation: 
  undirected graph 
  potentials over cliques (or sub-cliques) 
  normalize to obtain probabilities 
  need partition function 

  Representation Theorem for Markov networks 
  if P factorizes, then it’s an I-map 
  if P is an I-map, only factorizes for positive distributions  

  Independence in Markov nets: 
  active paths and separation 
  pairwise Markov and Markov blanket assumptions 
  equivalence for positive distributions 

  Minimal I-maps in MNs are unique 
  Perfect maps don’t always exist 
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Some common Markov networks 
and generalizations 

  Pairwise Markov networks 
  A very simple application in computer vision 
  Logarithmic representation 
  Log-linear models 
  Factor graphs 
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Pairwise Markov Networks 

  All factors are over single variables or pairs of 
variables: 
  Node potentials 
  Edge potentials 

  Factorization: 

  Note that there may be bigger cliques in the 
graph, but only consider pairwise potentials 

T1 

T3 T4 

T5 T6 

T2 

T7 T8 T9 
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A very simple vision application 
  Image segmentation: separate foreground from 

background 
  Graph structure:  

  pairwise Markov net 
  grid with one node per pixel 

  Node potential: 
  “background color” v. “foreground color” 

  Edge potential: 
  neighbors like to be of the same class 
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Logarithmic representation 
  Standard model: 

  Log representation of potential (assuming positive potential): 
  also called the energy function 

  Log representation of Markov net: 
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Log-linear Markov network 
(most common representation) 

  Feature is some function f [D] for some subset of variables D 
  e.g., indicator function 

  Log-linear model over a Markov network H: 
  a set of features f1[D1],…, fk[Dk] 

  each Di is a subset of a clique in H 
  two f’s can be over the same variables 

  a set of weights w1,…,wk 
  usually learned from data 

     
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Structure in cliques 

  Possible potentials for this graph: A 
B 

C 
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Factor graphs 

  Very useful for approximate inference 
  Make factor dependency explicit 

  Bipartite graph: 
  variable nodes (ovals) for X1,…,Xn 
  factor nodes (squares) for φ1,…,φm 
  edge Xi – φj if Xi2 Scope[φj] 

A 
B 

C 
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Exact inference in MNs and Factor 
Graphs 

  Variable elimination algorithm presented in terms 
of factors ! exactly the same VE algorithm can be 
applied to MNs & Factor Graphs 

  Junction tree algorithms also applied directly here: 
  triangulate MN graph as we did with moralized graph 
 each factor belongs to a clique 
 same message passing algorithms 
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Summary of types of Markov nets 

  Pairwise Markov networks 
 very common 
 potentials over nodes and edges 

  Log-linear models 
  log representation of potentials 
  linear coefficients learned from data 
 most common for learning MNs 

  Factor graphs 
 explicit representation of factors 

  you know exactly what factors you have 
 very useful for approximate inference 
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What you learned about so far 

  Bayes nets 
  Junction trees 
  (General) Markov networks 
  Pairwise Markov networks 
  Factor graphs 

  How do we transform between them? 
  More formally: 

  I give you an graph in one representation, find an I-map 
in the other 
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From Bayes nets to Markov nets 

SAT Grade 

Job 

Letter 

Intelligence 
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BNs ! MNs: Moralization 

  Theorem: Given a BN G the Markov net 
H formed by moralizing G is the minimal     
I-map for I(G) 

  Intuition: 
  in a Markov net, each factor must correspond 

to a subset of a clique 
  the factors in BNs are the CPTs 
  CPTs are factors over a node and its parents 
  thus node and its parents must form a clique 

  Effect: 
  some independencies that could be read from 

the BN graph become hidden 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 
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From Markov nets to Bayes nets 

Exam Grade 

Job 

Letter 

Intelligence 

SAT 



16 

10-708 – ©Carlos Guestrin 2006-2008 31 

MNs ! BNs: Triangulation 

  Theorem: Given a MN H, let G be the 
Bayes net that is a minimal I-map for I(H) 
then G must be chordal 

  Intuition: 
  v-structures in BN introduce immoralities 
  these immoralities were not present in a 

Markov net 
  the triangulation eliminates immoralities 

  Effect: 
  many independencies that could be read from 

the MN graph become hidden 

Exam Grade 

Job 

Letter 

Intelligence 

SAT 

Exam Grade 

Job 

Letter 

Intelligence 

SAT 
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Markov nets v. Pairwise MNs 

  Every Markov network can be 
transformed into a Pairwise Markov net 
  introduce extra “variable” for each factor 

over three or more variables 
  domain size of extra variable is exponential 

in number of vars in factor 

  Effect: 
  any local structure in factor is lost 
  a chordal MN doesn’t look chordal anymore 

A 
B 

C 
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Overview of types of graphical models 
and transformations between them 


