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X={X4,.... X} ]
— N ol
m A distribution P factorizes over Hif4 J o4 1 f

subsets of variables D,CX,..., D,,CX, such that the D; ar|\ |
fully connected i inH H

non-negative potentlals (or factors) ¢1(D1) ..... (D)
= also known as cllque potentials

=L L 1)

m Also called Markov random field H, or Gibbs
distribution over H
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Global Markov assumption in

Markgv ngtworks

m Apath X, —... — X is active when set of variables
Zare obseived if none of X V€ Xy, X} are
observed (are part of Z)

m Variables X are separated from Y given Z in
graph H, sepy(X;Y|Z), if there is no active path
between any X€X and any Y&Y given Z

m  The global Markov assumptlon fora Markq>< \f ‘%

network H is SQ?\AT(\# Y ’%‘) B
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The BN Representation Theorem

" J— 0000
_ If conditional Joint probability
independencies distribution:
in BN are subset of .
conditional

P(X1,...,Xn) = 1_1 P(X; | Pay,)

independencies in P ]

Important because:
Independencies are sufficient to obtain BN structure G

Then conditional

Ifjoi_nt propability independencies
distribution: in BN are subset of
n conditional
PG X = 1P (X Pax,) independencies in P

Important because:
Read independencies of P from BN structure G

Markov networks representation Theorem 1
5

If joint probability
distributi;)anD: His an I-map for P
P(Xy,..., Xa) = 5 [[ (Do)
1=1

m |f you can write distribution as a normalized product of
factors = Can read independencies from graph
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What about the other direction for Markov
networks ?

| . ——
joint probability
If His an I-map for P distribution TIZ:
1
P(Xy,..., Xpn) = iz]'[lasi(Di)

m Counter-example: X,,...,X, are binary, and only eight assignments

have positive probability: (0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)
0,0,0,1) (0,011 (01,1 (L,1,L1)

m For example, X;LX;5|Xy,X,:
E.g., P(X,=0|X,=0, X,=0)

m But distribution doesn’t factorize!!!
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Markov networks representation Theorem 2

‘Hammerslex-CIifford Theorem)

If His an I-map for P joint probability
and distribution P:
P is a positive distribution 1
P(Xy,...,X5) = 7 [ ¢:D))
=1

m Positive distribution and independencies = P factorizes
over graph
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Representation Theorem for

B Markgv Ngtwgrks

If joint probability
distribution P: His an I-map for P
1

If His an I-map for P joint probability
and distribution P:
P is a positive distribution 1
P(Xy,...,X,) = 7 [14:(Dy)
3=1
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Completeness of separation in

. garkov networks

m Theorem: Completeness of separation

For “almost all” distributions that P factorize over Markov
network H, we have that [(H) = |(P)

“almost all” distributions: except for a set of measure zero of
parameterizations of the Potentials (assuming no finite set of
parameterizations has positive measure)

m Analogous to BNs
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What are the “local” independence

. g2ssumptiions fgr a Markov network?

m Ina BN G:

local Markov assumption: variable independent of
non-descendants given parents

d-separation defines global independence
Soundness: For all distributions:

m |In a Markov net H:
Separation defines global independencies
What are the notions of local independencies?
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Local independence assumptions

. fgra Markov network

m Separation defines global independencies

m Pairwise Markov Independence: e
Pairs of non-adjacent variables A,B are independent given all G

others

m Markov Blanket: G @ @

Variable A independent of rest given its neighbors
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Equivalence of independencies in

B Markgv ngtwgrkﬁ

m Soundness Theorem: For all positive distributions P,
the following three statements are equivalent:
P entails the global Markov assumptions

P entails the pairwise Markov assumptions

P entails the local Markov assumptions (Markov blanket)
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Minimal I-maps and Markov

B} Ng;wgrks

m A fully connected graph is an I-map
m Remember minimal I-maps?
A “simplest” I-map — Deleting an edge makes it no longer an I-map

m |n a BN, there is no unique minimal I-map

m Theorem: For positive distributions & Markov network, minimal I-map is
unique!!
m  Many ways to find minimal I-map, e.g.,
Take pairwise Markov assumption:
If P doesn’t entail it, add edge:
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How about a perfect map?
" JEE—

m Remember perfect maps?
independencies in the graph are exactly the same as those in P

m For BNs, doesn’t always exist
counter example: Swinging Couples

m How about for Markov networks?
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Unifying properties of BNs and MNs

= JEEE
m BNs:

give you: V-structures, CPTs are conditional probabilities, can
directly compute probability of full instantiation

but: require acyclicity, and thus no perfect map for swinging
couples

= MNs:
give you: cycles, and perfect maps for swinging couples
but: don’t have V-structures, cannot interpret potentials as
probabilities, requires partition function

m Remember PDAGS???
skeleton + immoralities
provides a (somewhat) unified representation
see book for details
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What you need to know so far

B ﬁﬁﬁHt Markgv n?tworks

m Markov network representation:
undirected graph
potentials over cliques (or sub-cliques)
normalize to obtain probabilities
need partition function
Representation Theorem for Markov networks
if P factorizes, then it's an I-map
if P is an I-map, only factorizes for positive distributions
Independence in Markov nets:
active paths and separation
pairwise Markov and Markov blanket assumptions
equivalence for positive distributions
Minimal I-maps in MNs are unique

Perfect maps don’t always exist
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Some common Markov networks

. o20d generalizations

m Pairwise Markov networks

m A very simple application in computer vision
m Logarithmic representation

m Log-linear models

m Factor graphs
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Pairwise Markov Networks
S

m All factors are over single variables or pairs of G
variables:
Node potentials e

Edge potentials
m Factorization:

iV,

m Note that there may be bigger cliques in the
graph, but only consider pairwise potentials
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A very simple vision application
" S

m Image segmentation: separate foreground from
background
m Graph structure:
pairwise Markov net
grid with one node per pixel

= Node potential:
“background color” v. “foreground color”

m Edge potential:
neighbors like to be of the same class
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Logarithmic representation
" JEE

Standard model: 145
" P(Xy,...,X,) = EH@-(DJ
i=1

m Log representation of potential (assuming positive potential):
also called the energy function

m Log representation of Markov net:
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Log-linear Markov network

_ ‘most common representation)

m Feature is some function f [D] for some subset of variables D
e.g., indicator function

m Log-linear model over a Markov network H:
a set of features f,[D,],..., f,[D,]
= each D, is a subset of a clique in H
= two f's can be over the same variables
a set of weights wy,...,w,
= usually learned from data

P(Xy,...,X,) = %exp

k
Zwifi(Di)]
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Structure in cliques
* JE

m Possible potentials for this graph:
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Factor graphs
" JEE—
m Very useful for approximate inference
Make factor dependency explicit
m Bipartite graph:
variable nodes (ovals) for X,,...,X

factor nodes (squares) for ¢,...,¢,
edge X; — ¢; if X;€ Scope[¢)]
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Exact inference in MNs and Factor

S CIE T

m Variable elimination algorithm presented in terms
of factors — exactly the same VE algorithm can be
applied to MNs & Factor Graphs

m Junction tree algorithms also applied directly here:

triangulate MN graph as we did with moralized graph
each factor belongs to a clique
same message passing algorithms

25

Summary of types of Markov nets
" JEE
m Pairwise Markov networks
very common
potentials over nodes and edges
m Log-linear models
log representation of potentials
linear coefficients learned from data
most common for learning MNs
m Factor graphs

explicit representation of factors
= you know exactly what factors you have

very useful for approximate inference
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What you learned about so far
* JEE
m Bayes nets
m Junction trees
(General) Markov networks
m Pairwise Markov networks
m Factor graphs

How do we transform between them?

More formally:

| give you an graph in one representation, find an I-map
in the other

27

From Bayes nets to Markov nets
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BNs — MNs: Moralization

" J

m Theorem: Given a BN G the Markov net
H formed by moralizing G is the minimal
I-map for I(G)

= Intuition:

in a Markov net, each factor must correspond
to a subset of a clique

the factors in BNs are the CPTs
CPTs are factors over a node and its parents
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thus node and its parents must form a clique @ Q)

n Effect: <>
some independencies that could be read from <
the BN graph become hidden
God <>,

29

From Markov nets to Bayes nets
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MNs — BNs: Triangulation
" JE =
m Theorem: Given a MN H, let G be the G G

Bayes net that is a minimal I-map for I(H)

then G must be chordal Qo) G
= Intuition: D

v-structures in BN introduce immoralities

these immoralities were not present in a G
Markov net

the triangulation eliminates immoralities

m Effect:

many independencies that could be read from <>
the MN graph become hidden

Oad
Ul
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Markov nets v. Pairwise MNs
" JE
m Every Markov network can be e'e
©

transformed into a Pairwise Markov net

introduce extra “variable” for each factor
over three or more variables

domain size of extra variable is exponential
in number of vars in factor

m Effect:

any local structure in factor is lost
a chordal MN doesn’t look chordal anymore
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Overview of types of graphical models
and transformations between them
= JEE
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