

If conditional independencies in BN are subset of conditional independencies in P

Obtain Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$$

Important because:

Independencies are sufficient to obtain BN structure G

If joint probability distribution:

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$

Important because:

Read independencies of P from BN structure G

Markov networks representation Theorem 1

If joint probability distribution P: $P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^n \phi_i(\mathbf{D}_i)$

Then

H is an I-map for P

■ If you can write distribution as a normalized product of factors ⇒ Can read independencies from graph

0-708 - ©Carlos Guestrin 2006-200

What about the other direction for Markov networks?

If H is an I-map for P

Then

joint probability

distribution
$$P$$
:
$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$$

- Counter-example: X₁,...,X₄ are binary, and only eight assignments have positive probability: (0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0) (0,0,0,1) (0,0,1,1) (0,1,1,1) (1,1,1,1)
- For example, $X_1 \perp X_3 \mid X_2, X_4$: \square E.g., $P(X_1=0|X_2=0, X_4=0)$
- But distribution doesn't factorize!!!

Markov networks representation Theorem 2 (Hammersley-Clifford Theorem)

If H is an I-map for P and

P is a positive distribution

Then

joint probability distribution P:

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$$

■ Positive distribution and independencies ⇒ P factorizes over graph

If joint probability distribution
$$P$$
: Then $P(X_1,\ldots,X_n)=\frac{1}{Z}\prod_{i=1}^m\phi_i(\mathbf{D}_i)$

If H is an I-map for P and P is a positive distribution P: $P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$

10-708 - @Carlos Guestrin 2006-200

Completeness of separation in Markov networks

- Theorem: Completeness of separation
 - □ For "almost all" distributions that P factorize over Markov network H, we have that I(H) = I(P)
 - □ "almost all" distributions: except for a set of measure zero of parameterizations of the Potentials (assuming no finite set of parameterizations has positive measure)
- Analogous to BNs

0-708 – ©Carlos Guestrin 2006-2008

What are the "local" independence assumptions for a Markov network?

- In a BN *G*:
 - local Markov assumption: variable independent of non-descendants given parents
 - □ d-separation defines global independence
 - □ Soundness: For all distributions:
- In a Markov net H:
 - □ Separation defines global independencies
 - □ What are the notions of local independencies?

10-708 - @Carlos Guestrin 2006-2008

11

Local independence assumptions for a Markov network

- Separation defines global independencies
- Pairwise Markov Independence:
 - Pairs of non-adjacent variables A,B are independent given all others

- Markov Blanket:
 - □ Variable A independent of rest given its neighbors

10-708 – ©Carlos Guestrin 2006-2008

Equivalence of independencies in Markov networks

- **Soundness Theorem**: For all positive distributions *P*, the following three statements are equivalent:
 - ☐ P entails the global Markov assumptions
 - ☐ P entails the pairwise Markov assumptions
 - ☐ P entails the local Markov assumptions (Markov blanket)

10-708 - @Carlos Guestrin 2006-2008

13

Minimal I-maps and Markov Networks

- A fully connected graph is an I-map
- Remember minimal I-maps?
 - $\hfill\Box$ A "simplest" I-map \to Deleting an edge makes it no longer an I-map
- In a BN, there is no unique minimal I-map
- Theorem: For positive distributions & Markov network, minimal I-map is unique!!
- Many ways to find minimal I-map, e.g.,
 - □ Take pairwise Markov assumption:
 - ☐ If P doesn't entail it, add edge:

10-708 - ©Carlos Guestrin 2006-2008

How about a perfect map?

- Remember perfect maps?
 - \Box independencies in the graph are exactly the same as those in P
- For BNs, doesn't always exist
 - □ counter example: Swinging Couples
- How about for Markov networks?

10-708 - @Carlos Guestrin 2006-200

15

Unifying properties of BNs and MNs

BNs:

- □ give you: V-structures, CPTs are conditional probabilities, can directly compute probability of full instantiation
- but: require acyclicity, and thus no perfect map for swinging couples

MNs:

- □ give you: cycles, and perfect maps for swinging couples
- □ but: don't have V-structures, cannot interpret potentials as probabilities, requires partition function

Remember PDAGS???

- □ skeleton + immoralities
- □ provides a (somewhat) unified representation
- □ see book for details

10-708 – ©Carlos Guestrin 2006-2008

What you need to know so far about Markov networks

- Markov network representation:
 - □ undirected graph
 - □ potentials over cliques (or sub-cliques)
 - □ normalize to obtain probabilities
 - need partition function
- Representation Theorem for Markov networks
 - ☐ if P factorizes, then it's an I-map
 - ☐ if P is an I-map, only factorizes for positive distributions
- Independence in Markov nets:
 - □ active paths and separation
 - □ pairwise Markov and Markov blanket assumptions
 - equivalence for positive distributions
- Minimal I-maps in MNs are unique
- Perfect maps don't always exist

10-708 - @Carlos Guestrin 2006-2008

17

Some common Markov networks and generalizations

- Pairwise Markov networks
- A very simple application in computer vision
- Logarithmic representation
- Log-linear models
- Factor graphs

10-708 - @Carlos Guestrin 2006-2008

Pairwise Markov Networks

- All factors are over single variables or pairs of variables:
 - Node potentials
 - Edge potentials
- Factorization:

 Note that there may be bigger cliques in the graph, but only consider pairwise potentials

10-708 - @Carlos Guestrin 2006-2008

19

A very simple vision application

- Image segmentation: separate foreground from background
- Graph structure:
 - □ pairwise Markov net
 - □ grid with one node per pixel

- Node potential:
 - □ "background color" v. "foreground color"
- Edge potential:
 - $\hfill \square$ neighbors like to be of the same class

10-708 – @Carlos Guestrin 2006-2008

Logarithmic representation

- lacksquare Standard model: $P(X_1,\ldots,X_n)=rac{1}{Z}\prod_{i=1}^m\phi_i(\mathbf{D}_i)$
- Log representation of potential (assuming positive potential):
 - □ also called the energy function
- Log representation of Markov net:

10-708 - @Carlos Guestrin 2006-200

21

Log-linear Markov network (most common representation)

- Feature is some function f [D] for some subset of variables D
 - □ e.g., indicator function
- Log-linear model over a Markov network H:
 - \square a set of features $f_1[\mathbf{D}_1], ..., f_k[\mathbf{D}_k]$
 - each **D**_i is a subset of a clique in H
 - two f's can be over the same variables
 - □ a set of weights w₁,...,w_k
 - usually learned from data

$$\square P(X_1, \dots, X_n) = \frac{1}{Z} \exp \left[\sum_{i=1}^k w_i f_i(\mathbf{D}_i) \right]$$

10-708 – ©Carlos Guestrin 2006-2008

Structure in cliques

Possible potentials for this graph:

10-708 - @Carlos Guestrin 2006-2008

23

Factor graphs

- Very useful for approximate inference
 - □ Make factor dependency explicit
- Bipartite graph:
 - $\ \square$ variable nodes (ovals) for $X_1,...,X_n$
 - $\hfill\Box$ factor nodes (squares) for $\varphi_1, \ldots, \varphi_m$
 - $\ \ \square \ \ \text{edge} \ X_i \varphi_j \ \text{if} \ X_i \!\! \in Scope[\varphi_j]$

0-708 – ©Carlos Guestrin 2006-2008

Exact inference in MNs and Factor Graphs

- Variable elimination algorithm presented in terms of factors → exactly the same VE algorithm can be applied to MNs & Factor Graphs
- Junction tree algorithms also applied directly here:
 - □ triangulate MN graph as we did with moralized graph
 - □ each factor belongs to a clique
 - □ same message passing algorithms

10-708 - @Carlos Guestrin 2006-2008

25

Summary of types of Markov nets

- Pairwise Markov networks
 - □ very common
 - □ potentials over nodes and edges
- Log-linear models
 - □ log representation of potentials
 - □ linear coefficients learned from data
 - ☐ most common for learning MNs
- Factor graphs
 - □ explicit representation of factors
 - you know exactly what factors you have
 - □ very useful for approximate inference

10-708 - ©Carlos Guestrin 2006-2008

What you learned about so far

- Bayes nets
- Junction trees
- (General) Markov networks
- Pairwise Markov networks
- Factor graphs
- How do we transform between them?
- More formally:
 - □ I give you an graph in one representation, find an **I-map** in the other

10-708 - @Carlos Guestrin 2006-2008

27

From Bayes nets to Markov nets

10-708 - ©Carlos Guestrin 2006-2008

BNs → MNs: Moralization Theorem: Given a BN G the Markov net H formed by moralizing G is the minimal I-map for I(G) Intuition: in a Markov net, each factor must correspond to a subset of a clique the factors in BNs are the CPTs CPTs are factors over a node and its parents thus node and its parents must form a clique Effect: some independencies that could be read from the BN graph become hidden

$MNs \rightarrow BNs$: Triangulation

■ **Theorem**: Given a MN *H*, let *G* be the Bayes net that is a *minimal I-map* for I(*H*) then *G* must be **chordal**

Intuition:

- □ v-structures in BN introduce immoralities
- these immoralities were not present in a Markov net
- □ the triangulation eliminates immoralities

Effect:

many independencies that could be read from the MN graph become hidden

10-708 - @Carlos Guastrin 2006-2008

31

Markov nets v. Pairwise MNs

 Every Markov network can be transformed into a Pairwise Markov net

- □ introduce extra "variable" for each factor over three or more variables
- domain size of extra variable is exponential in number of vars in factor

Effect:

- □ any local structure in factor is lost
- □ a chordal MN doesn't look chordal anymore

10-708 – @Carlos Guestrin 2006-2008

