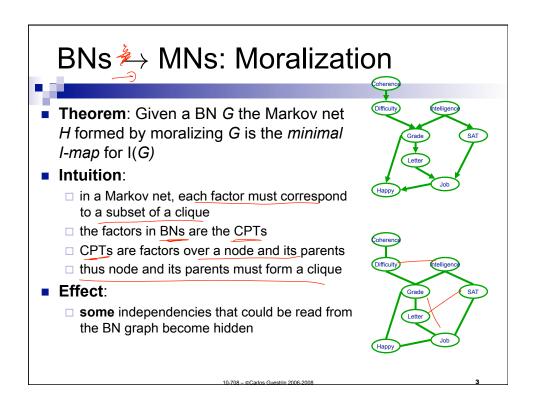
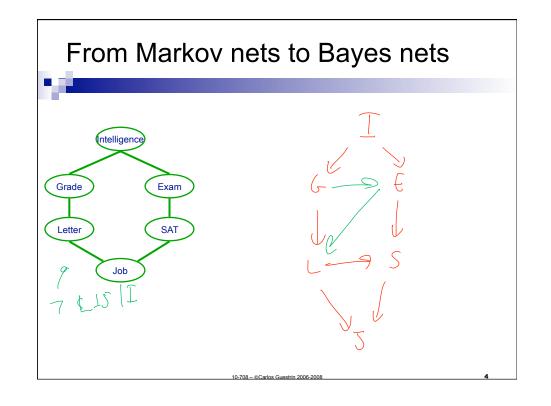


What you learned about so far

- - Bayes nets
 - ✓ Junction trees
 - **■** (General) Markov networks
 - Pairwise Markov networks
 - Factor graphs
 - How do we transform between them?
 - More formally:
 - □ I give you an graph in one representation, find an **I-map** in the other

10-708 - @Carlos Guestrin 2006-2008





$MNs \rightarrow BNs$: Triangulation

■ **Theorem**: Given a MN *H*, let *G* be the Bayes net that is a *minimal I-map* for I(*H*) then *G* must be **chordal**

Intuition:

- □ v-structures in BN introduce immoralities
- □ these immoralities were not present in a Markov net
- □ the triangulation eliminates immoralities

□ many independencies that could be read from the MN graph become hidden

10-708 - @Carlos Guestrin 2006-2008

_

Markov nets v. Pairwise MNs

 Every Markov network can be transformed into a Pairwise Markov net

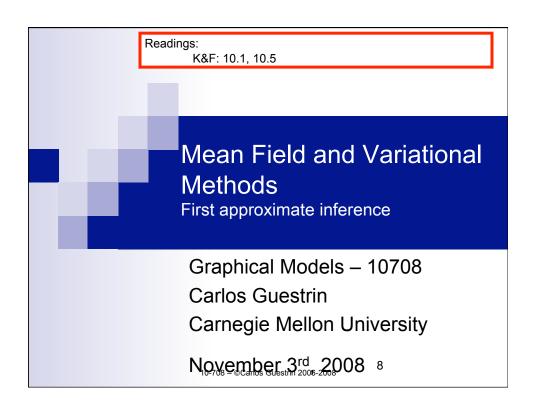
- □ introduce extra "variable" for each factor over three or more variables
- □ domain size of extra variable is exponential in number of vars in factor

Effect:

- □ any local structure in factor is lost
- □ a chordal MN doesn't look chordal anymore

0-708 - ©Carlos Guestrin 2006-200

Overview of types of graphical models and transformations between them



Approximate inference overview

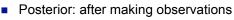
- So far: VE & junction trees
 - □ exact inference
 - □ exponential in tree-width
- There are many many many many approximate inference algorithms for PGMs
- We will focus on three representative ones:
 - □ sampling
 - □ variational inference
 - □ loopy belief propagation and generalized belief propagation

10-708 - @Carlos Guestrin 2006-2008

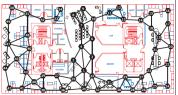
9

Approximating the posterior v. approximating the prior

- Prior model represents entire world
 - world is complicated
 - □ thus prior model can be very complicated



- sometimes can become much more sure about the way things are
- □ sometimes can be approximated by a simple model
- First approach to approximate inference: find simple model that is "close" to posterior
- Fundamental problems:
 - what is close?
 - posterior is intractable result of inference, how can we approximate what we don't have?



10-708 – @Carlos Guestrin 2006-2008

KL divergence:

Distance between distributions

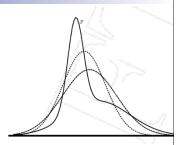
- Given two distributions *p* and *q* KL divergence:
- D(p||q) = 0 iff p=q
- Not symmetric p determines where difference is important
 - □ p(x)=0 and $q(x)\neq 0$
 - \Box p(x) \neq 0 and q(x)=0

10-708 - @Carlos Guestrin 2006-2008

11

Find simple approximate distribution

- Suppose p is intractable posterior
- Want to find simple q that approximates p
- KL divergence not symmetric
- D(p||q)
 - □ true distribution p defines support of diff.
 - □ the "correct" direction
 - □ will be intractable to compute
- D(q||p)
 - □ approximate distribution defines support
 - $\hfill \square$ tends to give overconfident results
 - □ will be tractable



0-708 - ©Carlos Guestrin 2006-200

Back to graphical models

- Inference in a graphical model:
 - \square P(x) =
 - \square want to compute $P(X_i|\mathbf{e})$
 - □ our *p*:
- What is the simplest q?
 - □ every variable is independent:
 - □ mean field approximation
 - $\hfill\Box$ can compute any prob. very efficiently

10-708 - @Carlos Guestrin 2006-2008

13

D(p||q) for mean field – KL the right way

- p:
- **q**:
- D(p||q)=

10-708 – @Carlos Guestrin 2006-2008

D(q||p) for mean field – KL the reverse direction

- p:
- **q**:
- D(q||p)=

10-708 - @Carlos Guestrin 2006-2008

15

D(q||p) for mean field – KL the reverse direction: Entropy term

- p:
- **q**:

$$D(q||p) = \sum_{x} q(x) \log q(x) - \sum_{x} q(x) \log p(x)$$

10-708 – ©Carlos Guestrin 2006-2008

D(q||p) for mean field -

KL the reverse direction: cross-entropy term

- **p**:
- **q**

$$D(q||p) = \sum_{x} q(x) \log q(x) - \sum_{x} q(x) \log p(x)$$

10-708 - @Carlos Guestrin 2006-200

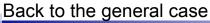
17

What you need to know so far

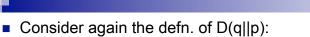
- Goal:
 - □ Find an efficient distribution that is close to posterior
- Distance:
 - □ measure distance in terms of KL divergence
- Asymmetry of KL:
 - \square D(p||q) \neq D(q||p)
- Computing right KL is intractable, so we use the reverse KL

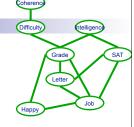
10-708 – ©Carlos Guestrin 2006-2008

Reverse KL & The Partition Function



□ p is Markov net P_F





- Theorem: $\ln Z = F[P_{\mathcal{F}}, Q] + D(Q||P_{\mathcal{F}})$
- where energy functional: $F[P_{\mathcal{F}},Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$

Understanding Reverse KL, Energy Function & The Partition Function

$$\ln Z = F[P_{\mathcal{F}},Q] + D(Q||P_{\mathcal{F}}) \qquad \qquad F[P_{\mathcal{F}},Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$$

$$F[P_{\mathcal{F}}, Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$$

- Maximizing Energy Functional

 Minimizing Reverse KL
- **Theorem**: Energy Function is lower bound on partition function
 - ☐ Maximizing energy functional corresponds to search for tight lower bound on partition function

Structured Variational Approximate In $Z = F[P_{\mathcal{F}}, Q] + D(Q||P_{\mathcal{F}})$ $F[P_{\mathcal{F}}, Q] = \sum\limits_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$

- Pick a family of distributions Q that allow for exact inference
 - □ e.g., fully factorized (mean field)
- Find $Q \in Q$ that maximizes $F[P_F, Q]$
- For mean field

Optimization for mean field

$$\begin{aligned} \max_{Q} F[P_{\mathcal{F}}, Q] &= & \max_{Q} \sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi] + \sum_{j} H_{Q_{j}}(X_{j}) \\ &\forall i, \sum_{i} Q_{i}(x_{i}) = 1 \end{aligned}$$

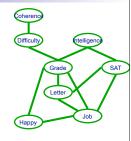
- Constrained optimization, solved via Lagrangian multiplier

 - □ Take derivative, set to zero
- **Theorem**: Q is a stationary point of mean field approximation iff for each *i*:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

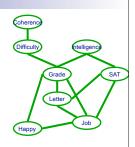
Understanding fixed point equation

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$



Simplifying fixed point equation

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$



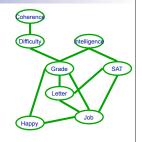
Q_i only needs to consider factors that intersect X_i

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

is equivalent to:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi_j: X_i \in \mathsf{Scope}[\phi_j]} E_Q[\ln \phi_j(\mathbf{U}_j, x_i)] \right\}$$

 $\hfill \square$ where the $Scope[\varphi_i]$ = $\textbf{U}_i \cup \{X_i\}$



There are many stationary points!

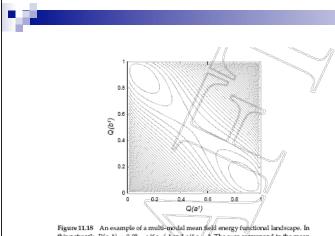


Figure 11.18 An example of a multi-modal mean field energy functional landscape. In this network, $P(a,b)=0.25-\epsilon$ if $a\neq b$ and ϵ if $a\neq b$. The axes correspond to the mean field marginal for A and B and the contours show equi-values of the energy functional.

Very simple approach for finding

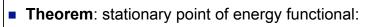
- Initialize Q (e.g., randomly or smartly)
- Set all vars to unprocessed
- Pick unprocessed var X_i
 - □ update Q_i:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi_j: X_i \in \mathsf{Scope}[\phi_j]} E_Q[\ln \phi_j(\mathbf{U}_j, x_i)] \right\}$$

- set var i as processed
- ☐ if Q_i changed
 - set neighbors of X_i to unprocessed
- Guaranteed to converge

More general structured approximations

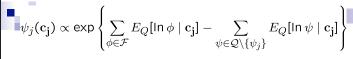
- Mean field very naïve approximation
- Consider more general form for Q
 - □ assumption: exact inference doable over Q



$$\psi_j(\mathbf{c_j}) \propto \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid \mathbf{c_j}] - \sum_{\psi \in \mathcal{Q} \backslash \{\psi_j\}} E_Q[\ln \psi \mid \mathbf{c_j}] \right\}$$

Very similar update rule

Computing update rule for general case



Consider one φ:

10-708 - @Carlos Guestrin 2006-2008

29

Structured Variational update requires inference

$$\begin{array}{c} - \text{requires inference} \\ \\ \psi_j(\mathbf{c_j}) \propto \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid \mathbf{c_j}] - \sum_{\psi \in \mathcal{Q} \setminus \{\psi_j\}} E_Q[\ln \psi \mid \mathbf{c_j}] \right\} \end{array}$$

- Compute marginals wrt Q of cliques in original graph and cliques in new graph, for all cliques
- What is a good way of computing all these marginals?
- Potential updates:
 - $\hfill \square$ sequential: compute marginals, update $\psi_{\text{i}},$ recompute marginals
 - \Box parallel: compute marginals, update all ψ 's, recompute marginals

10-708 - ©Carlos Guestrin 2006-2008

What you need to know about variational methods

- Structured Variational method:
 - □ select a form for approximate distribution
 - □ minimize reverse KL
- Equivalent to maximizing energy functional
 - $\hfill \square$ searching for a tight lower bound on the partition function
- Many possible models for Q:
 - □ independent (mean field)
 - □ structured as a Markov net
 - cluster variational
- Several subtleties outlined in the book

10-708 - @Carlos Guestrin 2006-2008

JI