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What you learned about so far

 Bayes nets

 Junction trees

 (General) Markov networks

 Pairwise Markov networks

 Factor graphs

 How do we transform between them?

 More formally:

 I give you an graph in one representation, find an I-map

in the other
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BNs ! MNs: Moralization

 Theorem: Given a BN G the Markov net 

H formed by moralizing G is the minimal     

I-map for I(G)

 Intuition:

 in a Markov net, each factor must correspond 

to a subset of a clique

 the factors in BNs are the CPTs

 CPTs are factors over a node and its parents

 thus node and its parents must form a clique

 Effect:

 some independencies that could be read from 

the BN graph become hidden
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From Markov nets to Bayes nets
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MNs ! BNs: Triangulation

 Theorem: Given a MN H, let G be the 

Bayes net that is a minimal I-map for I(H) 

then G must be chordal

 Intuition:

 v-structures in BN introduce immoralities

 these immoralities were not present in a 

Markov net

 the triangulation eliminates immoralities

 Effect:

 many independencies that could be read from 

the MN graph become hidden
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Markov nets v. Pairwise MNs

 Every Markov network can be 

transformed into a Pairwise Markov net

 introduce extra “variable” for each factor 

over three or more variables

 domain size of extra variable is exponential 

in number of vars in factor

 Effect:

 any local structure in factor is lost

 a chordal MN doesn’t look chordal anymore

A
B

C
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Overview of types of graphical models 

and transformations between them

8

Mean Field and Variational 

Methods
First approximate inference
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Approximate inference overview

 So far: VE & junction trees

 exact inference

 exponential in tree-width

 There are many many many many approximate 

inference algorithms for PGMs

 We will focus on three representative ones:

 sampling

 variational inference

 loopy belief propagation and generalized belief propagation
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Approximating the posterior v. 

approximating the prior

 Prior model represents entire world 

 world is complicated

 thus prior model can be very complicated

 Posterior: after making observations

 sometimes can become much more sure about the 

way things are

 sometimes can be approximated by a simple model

 First approach to approximate inference: find 

simple model that is “close” to posterior

 Fundamental problems:

 what is close?

 posterior is intractable result of inference, how 

can we approximate what we don’t have?
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KL divergence: 

Distance between distributions

 Given two distributions p and q KL divergence:

 D(p||q) = 0 iff p=q

 Not symmetric – p determines where difference is important

 p(x)=0 and q(x)0

 p(x)0 and q(x)=0
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Find simple approximate distribution

 Suppose p is intractable posterior

 Want to find simple q that approximates p

 KL divergence not symmetric

 D(p||q)

 true distribution p defines support of diff. 

 the “correct” direction

 will be intractable to compute

 D(q||p)

 approximate distribution defines support

 tends to give overconfident results

 will be tractable
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Back to graphical models

 Inference in a graphical model:

 P(x) = 

 want to compute P(Xi|e)

 our p:

 What is the simplest q?

 every variable is independent:

 mean field approximation

 can compute any prob. very efficiently
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D(p||q) for mean field –

KL the right way

 p:

 q:

 D(p||q)=
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D(q||p) for mean field –

KL the reverse direction

 p:

 q:

 D(q||p)=
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D(q||p) for mean field –

KL the reverse direction: Entropy term

 p:

 q:
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D(q||p) for mean field –

KL the reverse direction: cross-entropy term

 p:

 q:
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What you need to know so far

 Goal:

 Find an efficient distribution that is close to posterior

 Distance:

measure distance in terms of KL divergence

 Asymmetry of KL:

 D(p||q)  D(q||p)

 Computing right KL is intractable, so we use the 

reverse KL
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Reverse KL & The Partition Function
Back to the general case

 Consider again the defn. of D(q||p):

 p is Markov net PF

 Theorem: 

 where energy functional:
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Understanding Reverse KL, Energy 

Function & The Partition Function

 Maximizing Energy Functional  Minimizing Reverse KL

 Theorem: Energy Function is lower bound on partition function

 Maximizing energy functional corresponds to search for tight lower bound on 

partition function
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Structured Variational Approximate 

Inference

 Pick a family of distributions Q that allow for exact 

inference

 e.g., fully factorized (mean field)

 Find Q2Q that maximizes 

 For mean field
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Optimization for mean field

 Constrained optimization, solved via Lagrangian multiplier

 9 , such that optimization equivalent to:

 Take derivative, set to zero

 Theorem: Q is a stationary point of mean field approximation iff  for each i: 
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Understanding fixed point equation
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 Theorem: The fixed point:

is equivalent to:

 where the Scope[j] = Uj [ {Xi}

Qi only needs to consider factors 

that intersect Xi
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There are many stationary points!
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 Initialize Q (e.g., randomly or smartly)

 Set all vars to unprocessed

 Pick unprocessed var Xi

 update Qi:

 set var i as processed

 if Qi changed

 set neighbors of Xi to unprocessed

 Guaranteed to converge

Very simple approach for finding 

one stationary point
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More general structured approximations 

 Mean field very naïve approximation

 Consider more general form for Q

 assumption: exact inference doable over Q

 Theorem: stationary point of energy functional:

 Very similar update rule
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What you need to know about 

variational methods

 Structured Variational method:

 select a form for approximate distribution

 minimize reverse KL 

 Equivalent to maximizing energy functional

 searching for a tight lower bound on the partition function

 Many possible models for Q:

 independent (mean field)

 structured as a Markov net

 cluster variational

 Several subtleties outlined in the book


