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What you learned about so far
" JE
u/Bayes nets
& Junction trees
w (General) Markov networks
“m Pairwise Markov networks
& Factor graphs

m How do we transform between them?

m More formally:

| give you an graph in one representation, find an I-map
in the other




BNS:!;I\/I Ns: Moralization

" I T

m Theorem: Given a BN G the Markov net
H formed by moralizing G is the minimal
I-map for I(G)

m Intuition:

in a Markov net, each factor must correspond
to a subset of a clique

the factors in BNs are the CPTs

CPTs are factors over a node and its parents

thus node and its parents must form a clique
m Effect:

some independencies that could be read from
the BN graph become hidden




MNs £ BNs: Triangulation

Getigend)
m Theorem: Givep a M.N.H, let G be the G G
Bayes net that is a minimal I-map for I(H) = o
rdar . .,
then G must be cho TC6ye 10y < 1(P)
m Intuition: QD

v-structures in BN introduce immoralities

these immoralities were not present in a
Markov net

the triangulation eliminates immoralities
m Effect:

many independencies that could be read from
the MN graph become hidden

Markov nets v. Pairwise MNs
* A
m Every Markov network can be
transformed into a Pairwise Markov net

introduce extra “variable” for each facto
over three or more variables

domain size of extra variable is exponential
in number of vars in factor [N /A C»dy jmfl’
m Effect: B @
any local structure in factor is lost \}_
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Overview of types of graphical models

and transformations between them
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Readings:
K&F:10.1,10.5

‘Mean Field and Variational

Methods

First approximate inference
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ApprOX|mate Inference overview
" JE
m So far: VE & junction trees
exact inference
exponential in tree-width
m There are many many many many approximate
inference algorithms for PGMs
m We will focus on three representative ones:
sampling
variational inference
(: loopy belief propagation and generalized belief propagation

Approximating the posterior v.

aggroximating the prior

m Prior model represents entire world
world is complicated
thus prior model can be very complicated

m Posterior: after making observations ;
sometimes can become much more sure about th
way things are
sometimes can be approximated by a simple model

m First appro imate inference: find

simple model that is “close” to posterior

m Fundamental problems:
what is close?

posterior is intractable result of inference, how
can we approximate what we don’t have?




KL divergence: Plgp=g = xigis
Distance between distributions
= NN

m Given two distributions p and q KL divergence:

KL(V“@ED(M@ - Zpu log P&,
. (X
= D(pllg) = O iff p=q T
m Not symmetric — p determines where difference is important
%0 p=0and )20 ped) log PK) = f lsjd z0
%(ﬁ
(i\ [Oj P(’() - € {ijé
%6(

& p(x);tO and q(x)=0
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Find simple approximate distribution
" JEE
Suppose p is intractable posterior
—_— T~
Want to find simple g that approximates p
KL divergence not symmetric
D(plla)
true distribution p defines support of diff.
the “correct” direction
will be intractable to compute
D(allp)
approximate distribution defines support

tends to give overconfident results
will be tractable
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Back to graphical models

[ Inference in a graphical model: O(WP ¢ andk s
P(x) = '(/ \/ (CB 0. [,\9'3 BLLf\ /’\QMC{\[LCA
want to compute P@l_g_ in ey fochor
our p: = ﬂ q) LC

m Whatis the S|mplest q’)
every variable is independent: — | (

mean field approximation

can compute any prob. very efficiently

LG\SSQJ U\UC\I\}( ) C\M\) Q(7(> \A/i\QVL
et RFLan 1) &‘\3&\9%

D(pl|g) for mean field —
KL the right way
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D(q||p) for mean field —
KL the reverse direction

m p: ﬁ (‘)

=q ﬁ Q50
= D(lIP)= 5 419 log %@
m

- é%w l"j ch, . é%(;c) (c§ )

D(q||p) for mean field —
KL the reverse direction: Entropy term
JEE

- (\—'\ (TR'(U)
P 4 \ A{/}_ s 3}

D(q||p) = Z q(z) log g(z) — Zq (z) log p(z)
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. W”Qd Whese QC‘!‘
D(allp) for mean field — 378 =y « %r@}“"

KL the reverse direction: cross- entropy te

ﬁ' Pi@)
o q rﬂQm < etk
D(qllp) = ZQ(:E) logg(z) — ) _ q(z)logp(x)
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What you need to know so far

" JEE
m Goal: v(rl) v 1T Qs b@ Q<) ff\b/?(zﬁ@)
Find an efficient dlstrlbutlon that is close to posterior
m Distance:
measure distance in terms of KL divergence
m Asymmetry of KL:
D(pl|a) ¢

= Computing right KL is intractable, so we use the

reverse KL




Reverse KL & The Partition

Back to the %eneral case
]

m Consider again the defn. of D(q||p):
p is Markov net PF —

’)(x) J, fr (P(Cqs ki 2

Wt b
(on 9&&1’\—

e/ S st (/ m’m{m,‘_z‘_
m Theorem: InZ = F[Pr, Q]+ D(Q||Pr)

—
vty QL

m where energy functional:

F[Pr,Ql = ) Eqlin¢] + Hq(X), T Know
¢ ("ﬁ"‘o?\s L\G .b

T,. 3 C
S Ty

Understanding Reverse KL, Energy
Function & The Partition Function

In)\Z =’F! [Pr, Q] + ﬁl)(QHPf) FIPF,Ql =Y Foling] + Ho(X)

peF
m  Maximizing Energy Functional < Minimizing Reverse KL

Dglp) v 0

V
m Theorem: Energ;l%/énction is lower bound on partition function
F(Pe,@) + D(QIPe) = log "
we /"\%7({ ;
lq2 7P QS € e

Maximizing energy functional corresponds to search for tight lower bound on
partition function -
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Structured Variational Approximate
InZ = PPr,Ql + D(Q||Pr)

. _mference FIPRQI= 3 Pollnel + Tig()
m Pick a family of distributions Q that allow for exact
inference

e.g., fully factorized (mean field) ¢Cx) = ’ﬁ: Qj (IJ)
» Find QEQ that maximizes FlFrQl < 1(32

m For mean field

/V\ozj F(/Pf /{&’/"’) QS}

b b (1920
“;)Q ')U‘)\ -1
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Optimization for mean field
" I

max F[Pr,Q] = max Y Egllng]+ Y Hg, (X))
Q Q -
PEF J
Vi, Z Qz(.’ltl) =1
m Constrained optimization, solved via Lagrangian multiplier
9 A, such that optimization equivalent to:

Take derivative, set to zero

m Theorem: Q is a stationary point of mean field approximation iff for each i:

Qi(z;) = %GXD{ > Egling| $1‘]}

v QeF
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Understanding fixed point equation
" S
Qi(x;) = %EXD{ Y Eglno| ﬂfa]}

i oeF

Q; only needs to consider factors
that intersect X,
= BN

m Theorem: The fixed point:

Qi(x;) = %EXD{ Y Eglno| ﬂfa]}

i oeF

is equivalent to:

Qi(z;) = Zl exp 3 Eg[in¢;(Uj;, fﬂe’)]}

¢ o X;eScopefo;)

where the Scope[¢]] = U; [ {X}
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There are many stationary points!
" S

0E
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Figure11.18  Anexample of a multi-modal mean field energy functional landscape. In
this network, F(a, b) = 0.2% —eife # b and £if @ = b The axes correspond to the mean
field marginal for A and B and the contours show equi-values of the energy functional.

Very simple approach for fing

_ one stationarx point

m |Initialize Q (e.g., randomly or smartly)
m Set all vars to unprocessed
m Pick unprocessed var X;

update Q;:

Qi(z;) = Zl exp { S Eg[In ¢j(U3=$e’)]}

¢ o X;eScopefo;)

set var i as processed
if Q; changed
= set neighbors of X; to unprocessed
m Guaranteed to converge

27
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More general structured approations

" JE
m Mean field very naive approximation
m Consider more general form for Q

assumption: exact inference doable over Q

m Theorem: stationary point of energy functional:

Yi(ej) xexp{ > Egling|el— > Egliny | Cj]}
PpEF e\ {v;}

m Very similar update rule

What you need to know about
variational methods
" S

Structured Variational method:
select a form for approximate distribution
minimize reverse KL

Equivalent to maximizing energy functional
searching for a tight lower bound on the partition function

Many possible models for Q:
independent (mean field)
structured as a Markov net
cluster variational

Several subtleties outlined in the book

31
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