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Decomposable score
" S
] I_Aog data likelihood X X
log P(D|6,G) =m Y I(X;,Pax,)—m» H(X;)

m Decomposable score:

Decomposes over families in BN (node and its parents)
Will lead to significant computational efficiency!!!

N _—  —
Score(G : D) = ¥, FamScore(X;|Pay; : D)
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Chow-Liu tree learning algorithm 1

Ssf
" JEE / tren
= For each pair of variables X;,X; X Ly,

Compute empirical distribution: 2 2
Pz, xJ)PEE Count(x;, ;) ( (S
m
X3 X

Compute mutual information:

P(xz x;)
I(X;, X;) = xgﬂ P(x;,z;)log m (/]‘N-Z).
m Define a graph ’ﬁfﬁ\ foore

Nodes Xy,....X,
Edge (i,j) gets weight I(X;, X;) /

p\r\)\/ aimum ﬁ;m,wj u ’b jr )r/m

Maximum likelihood score overfits!
" JEE

0{\ log p(D | 9,g) = mZIA(XwPaXZ,g)_mZFI(Xl)

m Information never hurts:

é)\ 1(‘/\\ ,?6\)(1.5 - H(_)(l H’()(/ {JFO\)( > é?; l\\ﬁ)w,
H(AIR) < H(lC) CeB  Fagi)

m Adding a parent always increases score!!!
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Bayesian score
" JEE
m Prior distributions: (DG, 9,)

Over structures =
@] t f t t / gy OV ‘f) f‘lS <9 +
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flog P(G | D) = log P(G)+log P(D | G,05)P(0g|G)dbg
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Bayesian learning for multinomial
" I

M. & & obsediong

- i in???
m What if you have a k sided coin??% oF clus el
m Likelihood function if multinomial: - PYRY ,(,,\

PO 6, )= o™ 8, - O
i_g;:j_ 820

| Conjﬁgate prior for multinomial is D|r|chlet:
6 ~ Dirichlet(aq,...,a) ~ Heaz
ol$ 7 0 ‘
m Observe m data points, m; from assignment i, posterioi:
’P(@,_..Q,\I /"\‘--—m.g> oA ?(r"\\.u/"\ﬂ_'a("-ﬂ’(‘ PQ)

T)if'\@l'\("£ ("L\’\' ™y, K2t 2, /&L*‘MXJ

m Prediction:

£loT\ = Mmifets
i(f’\f“‘*&\
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Global parameter independence,

. adseparation and local prediction

m Independencies in meta BN:
a Al ?/;or vars

e
: ?(b@'i\j: P(oe) P6e) ?(B31e4) f(on

lS> ’P(G 4[S>

D, if prior satisfies global parameter

independence, then o)
N
PO | D) =][POx,pay | D)
| i ' /9
fronms i ndey. 4iven Aot NS

m Proposition: For fully observable data 0j

Priors for BN CPTs
. imore when we talk about structure learning)

m Consider each CPT: P(X|U=u)

m Conjugate prior: 1
Dirichlet(cy=1y=y:---» Oxaiqu=u) = Divml«xld—((om’( (=1 U:'“}"";‘

= More intuitive: (07 &iﬁ
“prior data set” D’ with m” equivalent sample s'ize ¢ (X:’C o)
“prior counts™  Cou ! (XZI,U:“> or mt. P %
prediction:

E[ 67(:1\\}”:5 _
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An example

o o
o ™ -

KL Divergence

o
[N

Bayes; M'=5

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
# instances
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What you need to know about

. gharameter learning

m Bayesian parameter learning:
motivation for Bayesian approach
Bayesian prediction
conjugate priors, equivalent sample size
Bayesian learning = smoothing

m Bayesian learning for BN parameters
Global parameter independence
Decomposition of prediction according to CPTs
Decomposition within a CPT
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Bayesian score and model complexity

True model:

m -IogP(D|g)=Iog/H P(D | G,05)P(051G)dog
g

m  Structure 1: X and Y independent

Score doesn’t depend on alpha

m Structure 2: X =Y
P(Y=t|X=t) = 0.5 + «

P(Y=t)X=f) = 0.5 -

Data points split between P(Y=t|X=t) and P(Y=t|X=f)
For fixed M, only worth it for large o
m Because posterior over parameter will be more diffuse with less data
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Bayesian, a decomposable score

. /09 P(D1G) =109 [ _P(D|G.09)P(6g1G)dog

As with last lecture, assume:
Parameter independence
Also, prior satisfies parameter modularity:
If X; has same parents in G and G’, then parameters have same prior

Finally, structure prior P(G) satisfies structure modularity
Product of terms over families
E.g., P(G) x cl®

Bayesian score decomposes along families!

12

10-708 — ©Carlos Guestrin 2006-2008




BIC approximation of Bayesian score
" JE
m Bayesian has difficult integrals
m For Dirichlet prior, can use simple Bayes
information criterion (BIC) approximation

In the limit, we can forget prior!

Theorem: for Dirichlet prior, and a BN with Dim(G)
independent parameters, as m—oo:

109 P(D | G) = log P(D | G, 6g)—'"2"DIm(6)+0(1)

13

BIC approximation, a

B} ggggmgosable score
logm

| BIC ScoreBIC(Q . D) = log P(D | g,eg)— >

Dim(g)

m Using information theoretic formulation:

logm
2

Scoregyc(G : D) = mz I(X;, Paxi’g)fmz H(X;)—- Z Dim(P(X; | Pax,g))
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Consistency of BIC and Bayesian
r

Consistency is limiting behavior, says nothing
about finite sample size!!!

m A scoring function is consistent if, for true model G’
as m—oo, with probability 1
G" maximizes the score
All structures not l-equivalent to G have strictly lower score
m Theorem: BIC score is consistent
m Corollary: the Bayesian score is consistent

m \What about maximum likelihood score?
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Priors for general graphs
" JEE
m For finite datasets, prior is important!
m Prior over structure satisfying prior modularity

m \What about prior over parameters, how do we represent it?
K2 prior. fix an a, P(By;pax;) = Dirichlet(c,..., a)
K2 is “inconsistent”
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BDe prior
S

Remember that Dirichlet parameters analogous to “fictitious
samples”
Pick a fictitious sample size m’
For each possible family, define a prior distribution P(X;,Pay;)
Represent with a BN
Usually independent (product of marginals)

BDe prior:

Has “consistency property”:
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Score equivalence
I

If G and G’ are l-equivalent then they have same score

Theorem 1: Maximum likelihood score and BIC score satisfy
score equivalence
Theorem 2:
If P(G) assigns same prior to l-equivalent structures (e.g., edge counting)
and parameter prior is dirichlet
then Bayesian score satisfies score equivalence if and only if prior
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Chow-Liu for Bayesian score
" JEE—

m Edge weight wy; .,; is advantage of adding X; as parent for X;

m Now have a directed graph, need directed spanning forest
Note that adding an edge can hurt Bayesian score — choose forest not tree
Maximum spanning forest algorithm works
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Structure learning for general graphs
* JEE
m In a tree, a node only has one parent

m Theorem:

The problem of learning a BN structure with at most d
parents is NP-hard for any (fixed) d=2

m Most structure learning approaches use heuristics
Exploit score decomposition

(Quickly) Describe two heuristics that exploit decomposition
in different ways
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Announcements
" JEE—

m Recitation tomorrow
Don’t miss it!!! ©

Understanding score decomposition

22
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Fixed variable order 1
" JE
m Pick a variable order
e.g., Xqy,...,. X,
m X; can only pick parents in
X4 X4}
Any subset
Acyclicity guaranteed!

m Total score = sum score of
each node
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Fixed variable order 2
= JEE

m Fix max number of parents to k
m For each jin order
Pick PayC {X,..., X4}
= Exhaustively search through all possible subsets
= Pay; is maximum UC {X,,..., X} FamScore(Xi|U : D)
m Optimal BN for each order!!!
m Greedy search through space of orders:

E.g., try switching pairs of variables in order

If neighboring vars in order are switched, only need to recompute score

for this pair
= O(n) speed up per iteration
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Learn BN structure using local search
" I

Local search, Select using

Starting from ; X
. ossible moves:
Chow-Liu tree gnly if acyclic!!! favorlte score

* Add edge
* Delete edge
* Invert edge

25

Exploit score decomposition in local

QA

m Add edge and delete edge:

Only rescore one family!

m Reverse edge
Rescore only two families

26
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Some experiments

-------- Parameter learning
e Structure learning

KL Divergence

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
#samples

Alarm network
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Order search versus graph search
" I
m Order search advantages

For fixed order, optimal BN — more “global” optimization
Space of orders much smaller than space of graphs

m Graph search advantages

Not restricted to k parents
» Especially if exploiting CPD structure, such as CSI

Cheaper per iteration
Finer moves within a graph
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Bayesian model averaging
" JEE
m So far, we have selected a single structure

m But, if you are really Bayesian, must average
over structures

Similar to averaging over parameters
09 P(D | G) = log | P(D | G,06)P(65|9)dbg
kY

m Inference for structure averaging is very hard!!!
Clever tricks in reading
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What you need to know about

B} Igﬁrning BN structures

m Decomposable scores
Data likelihood
Information theoretic interpretation
Bayesian
BIC approximation
m Priors
Structure and parameter assumptions
BDe if and only if score equivalence
Best tree (Chow-Liu)
Best TAN
Nearly best k-treewidth (in O(Nk*1))
Search techniques
Search through orders
Search through structures
m Bayesian model averaging
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Inference in graphical models:

_ Txgical ﬁueries 1
@ m Conditional probabilities
’ Distribution of some var(s). given evidence

Inference in graphical models:

_ Txgical gueries 2 — Maximization
m Most probable explanation (MPE)
@ Most likely assignment to all hidden vars given
evidence

- Maximum a posteriori (MAP)

Most likely assignment to some var(s) given
evidence

32
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Are MPE and MAP Consistent?
* JE—
m Most probable explanation (MPE)
Most likely assignment to all hidden
P(S=t)=0.4 P(N|S) vars given evidence
P(S=f)=0.6

m Maximum a posteriori (MAP)

Most likely assignment to some var(s)
given evidence

33

Complexity of conditional

. gRrobabllity gueries 1

m How hard is it to compute P(X|E=e)?
Reduction — 3-SAT
(X, vX,vXIA(X,vX,vX)A..

34
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Complexity of conditional

. .Dor it ries 2
m How hard is it to compute P(X|E=e)?
At least NP-hard, but even harder!

Inference is #P-complete, hopeless?
" S
m Exploit structure!

m Inference is hard in general, but easy for many
(real-world relevant) BN structures

36
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Complexity for other inference

9H9§“8”§
[ |
m Probabilistic inference

general graphs:
poly-trees and low tree-width:

m Approximate probabilistic inference
Absolute error:
Relative error:

m Most probable explanation (MPE)
general graphs:
poly-trees and low tree-width:

m Maximum a posteriori (MAP)

general graphs:
poly-trees and low tree-width:
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Inference in BNs hopeless?
" JEE
m |n general, yes!
Even approximate!

m |In practice
Exploit structure

Many effective approximation algorithms (some with
guarantees)

m For now, we’ll talk about exact inference
Approximate inference later this semester
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