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Structure Learning 
(The Good), The Bad, The Ugly 

A little inference too… 

Graphical Models – 10708 
Carlos Guestrin 
Carnegie Mellon University 

October 8th, 2008 

Readings: 
 K&F: 17.3, 17.4, 17.5.1, 8.1, 12.1 
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Decomposable score 

  Log data likelihood 

  Decomposable score: 
 Decomposes over families in BN (node and its parents) 
 Will lead to significant computational efficiency!!! 
 Score(G : D) = ∑i FamScore(Xi|PaXi : D) 



2 

10-708 – ©Carlos Guestrin 2006-2008 3 

Chow-Liu tree learning algorithm 1  

  For each pair of variables Xi,Xj 
  Compute empirical distribution: 

  Compute mutual information: 

  Define a graph 
  Nodes X1,…,Xn 
  Edge (i,j) gets weight 
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Maximum likelihood score overfits! 

  Information never hurts: 

  Adding a parent always increases score!!! 
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Bayesian score 

  Prior distributions: 
 Over structures 
 Over parameters of a structure 

  Posterior over structures given data: 
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Bayesian learning for multinomial 

  What if you have a k sided coin??? 
  Likelihood function if multinomial: 

    
    

  Conjugate prior for multinomial is Dirichlet: 
    

  Observe m data points, mi from assignment i, posterior: 

  Prediction: 
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Global parameter independence,
 d-separation and local prediction 

Flu Allergy 

Sinus 

Headache Nose 

  Independencies in meta BN: 

  Proposition: For fully observable data
 D, if prior satisfies global parameter
 independence, then    
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Priors for BN CPTs  
(more when we talk about structure learning) 

  Consider each CPT: P(X|U=u) 
  Conjugate prior: 

 Dirichlet(αX=1|U=u,…, αX=k|U=u) 
  More intuitive: 

  “prior data set” D’ with m’ equivalent sample size 
  “prior counts”: 
 prediction: 
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An example 
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What you need to know about
 parameter learning 

  Bayesian parameter learning: 
 motivation for Bayesian approach 
 Bayesian prediction 
 conjugate priors, equivalent sample size 
 Bayesian learning ) smoothing  

  Bayesian learning for BN parameters 
 Global parameter independence 
 Decomposition of prediction according to CPTs 
 Decomposition within a CPT 
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Bayesian score and model complexity 

X 

Y 

True model: 

P(Y=t|X=t) = 0.5 + α

P(Y=t|X=f) = 0.5 - α 

  Structure 1: X and Y independent 

  Score doesn’t depend on alpha 
  Structure 2: X ! Y 

  Data points split between P(Y=t|X=t) and P(Y=t|X=f) 
  For fixed M, only worth it for large α


  Because posterior over parameter will be more diffuse with less data 
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Bayesian, a decomposable score 

  As with last lecture, assume: 
  Parameter independence 

  Also, prior satisfies parameter modularity: 
  If Xi has same parents in G and G’, then parameters have same prior 

  Finally, structure prior P(G) satisfies structure modularity 
  Product of terms over families 
  E.g., P(G) / c|G| 

  Bayesian score decomposes along families! 
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BIC approximation of Bayesian score 

  Bayesian has difficult integrals 
  For Dirichlet prior, can use simple Bayes

 information criterion (BIC) approximation 
  In the limit, we can forget prior! 
 Theorem: for Dirichlet prior, and a BN with Dim(G)

 independent parameters, as m!1:  

10-708 – ©Carlos Guestrin 2006-2008 14 

BIC approximation, a
 decomposable score 

  BIC: 

  Using information theoretic formulation: 
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Consistency of BIC  and Bayesian
 scores 

  A scoring function is consistent if, for true model G*,
 as m!1, with probability 1 
 G* maximizes the score 
 All structures not I-equivalent to G* have strictly lower score 

  Theorem: BIC score is consistent 
  Corollary: the Bayesian score is consistent  
  What about maximum likelihood score? 

Consistency is limiting behavior, says nothing  
about finite sample size!!! 
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Priors for general graphs 

  For finite datasets, prior is important! 
  Prior over structure satisfying prior modularity 

  What about prior over parameters, how do we represent it? 
  K2 prior: fix an α, P(θXi|PaXi) = Dirichlet(α,…, α)  
  K2 is “inconsistent” 
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BDe prior 

  Remember that Dirichlet parameters analogous to “fictitious
 samples” 

  Pick a fictitious sample size m’ 
  For each possible family, define a prior distribution P(Xi,PaXi) 

  Represent with a BN 
  Usually independent (product of marginals) 

  BDe prior:  

  Has “consistency property”:  
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Score equivalence 

  If G and G’ are I-equivalent then they have same score 

  Theorem 1: Maximum likelihood score and BIC score satisfy
 score equivalence 

  Theorem 2:  
  If P(G) assigns same prior to I-equivalent structures (e.g., edge counting) 
  and parameter prior is dirichlet 
  then Bayesian score satisfies score equivalence if and only if prior

 over parameters represented as a BDe prior!!!!!! 
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Chow-Liu for Bayesian score 

  Edge weight wXj!Xi is advantage of adding Xj as parent for Xi 

  Now have a directed graph, need directed spanning forest 
  Note that adding an edge can hurt Bayesian score – choose forest not tree 
  Maximum spanning forest algorithm works 
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Structure learning for general graphs 

  In a tree, a node only has one parent 

  Theorem: 
 The problem of learning a BN structure with at most d

 parents is NP-hard for any (fixed) d≥2 

  Most structure learning approaches use heuristics 
 Exploit score decomposition 
  (Quickly) Describe two heuristics that exploit decomposition

 in different ways 
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Announcements 

  Recitation tomorrow 
  Don’t miss it!!!  
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Understanding score decomposition 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 
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Fixed variable order 1 

  Pick a variable order  
 e.g., X1,…,Xn 

  Xi can only pick parents in
 {X1,…,Xi-1} 
 Any subset 
 Acyclicity guaranteed! 

  Total score = sum score of
 each node 
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Fixed variable order 2 

  Fix max number of parents to k 
  For each i in order  

  Pick PaXi⊆ {X1,…,Xi-1} 
  Exhaustively search through all possible subsets 
  PaXi is maximum U⊆ {X1,…,Xi-1} FamScore(Xi|U : D) 

  Optimal BN for each order!!! 
  Greedy search through space of orders: 

  E.g., try switching pairs of variables in order 
  If neighboring vars in order are switched, only need to recompute score

 for this pair  
  O(n) speed up per iteration 
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Learn BN structure using local search 

Starting from  
Chow-Liu tree 

Local search, 
possible moves: 
Only if acyclic!!! 
•  Add edge 
•  Delete edge 
•  Invert edge 

Select using  
favorite score 

10-708 – ©Carlos Guestrin 2006-2008 26 

Exploit score decomposition in local
 search 

  Add edge and delete edge: 
 Only rescore one family! 

  Reverse edge 
 Rescore only two families 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 
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Some experiments 

Alarm network 
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Order search versus graph search 

  Order search advantages 
 For fixed order, optimal BN – more “global” optimization 
 Space of orders much smaller than  space of graphs 

  Graph search advantages 
 Not restricted to k parents 

  Especially if exploiting CPD structure, such as CSI 

 Cheaper per iteration 
 Finer moves within a graph 
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Bayesian model averaging 

  So far, we have selected a single structure 
  But, if you are really Bayesian, must average

 over structures 
 Similar to averaging over parameters 

  Inference for structure averaging is very hard!!! 
 Clever tricks in reading 
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What you need to know about
 learning BN structures 

  Decomposable scores 
  Data likelihood  
  Information theoretic interpretation 
  Bayesian 
  BIC approximation 

  Priors 
  Structure and parameter assumptions 
  BDe if and only if score equivalence 

  Best tree (Chow-Liu) 
  Best TAN 
  Nearly best k-treewidth (in O(Nk+1)) 
  Search techniques 

  Search through orders 
  Search through structures 

  Bayesian model averaging 



16 

10-708 – ©Carlos Guestrin 2006-2008 31 

Inference in graphical models:
 Typical queries 1 

Flu Allergy 

Sinus 

Headache Nose 

  Conditional probabilities 
  Distribution of some var(s). given evidence 
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Inference in graphical models:
 Typical queries 2 – Maximization 

Flu Allergy 

Sinus 

Headache Nose 

  Most probable explanation (MPE) 
  Most likely assignment to all hidden vars given 

evidence 

  Maximum a posteriori (MAP) 
  Most likely assignment to some var(s) given 

evidence 
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Are MPE and MAP Consistent? 

Sinus Nose 
  Most probable explanation (MPE) 

  Most likely assignment to all hidden 
vars given evidence 

  Maximum a posteriori (MAP) 
  Most likely assignment to some var(s) 

given evidence 

P(S=t)=0.4  
P(S=f)=0.6 

P(N|S) 
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Complexity of conditional
 probability queries 1 

  How hard is it to compute P(X|E=e)? 
Reduction – 3-SAT 
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Complexity of conditional
 probability queries 2 

  How hard is it to compute P(X|E=e)?  
 At least NP-hard, but even harder! 
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Inference is #P-complete, hopeless? 

  Exploit structure! 
  Inference is hard in general, but easy for many

 (real-world relevant) BN structures 
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Complexity for other inference
 questions 

  Probabilistic inference 
  general graphs: 
  poly-trees and low tree-width: 

  Approximate probabilistic inference 
  Absolute error: 
  Relative error: 

  Most probable explanation (MPE) 
  general graphs: 
  poly-trees and low tree-width: 

  Maximum a posteriori (MAP) 
  general graphs: 
  poly-trees and low tree-width: 
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Inference in BNs hopeless? 

  In general, yes!  
 Even approximate! 

  In practice 
 Exploit structure 
 Many effective approximation algorithms (some with

 guarantees) 

  For now, we’ll talk about exact inference 
 Approximate inference later this semester 


