

Decomposable score

Log data likelihood

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(X_{i}, \mathbf{Pa}_{X_{i}}) - m \sum_{i} \hat{H}(X_{i})$$

- Decomposable score:
 - □ Decomposes over families in BN (node and its parents)
 - □ Will lead to significant computational efficiency!!!
 - $\Box \operatorname{Score}(G:D) = \sum_{i=1}^{n} \operatorname{FamScore}(X_{i}|\mathbf{Pa}_{X_{i}}:D)$

10-708 – @Carlos Guestrin 2006-2008

Chow-Liu tree learning algorithm 1 For each pair of variables X_i, X_j Compute empirical distribution: $\hat{P}(x_i, x_j) \stackrel{\text{HLE}}{=} \frac{\text{Count}(x_i, x_j)}{m}$ Compute mutual information: $\hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$ Define a graph Nodes $X_1, ..., X_n$ Bedge (i,j) gets weight $\hat{I}(X_i, X_j)$ $Edge (i,j) gets weight \hat{I}(X_i, X_j)$ The first part of variables X_i, X_j $= \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$ The first part of variables X_i, X_j $= \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$ The first part of variables X_i, X_j $= \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$ The first part of variables X_i, X_j $= \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$ The first part of variables X_i, X_j $= \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$ The first part of variables X_i, X_j $= \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$ The first part of variables X_i, X_j $= \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$ The first part of variables X_i, X_j $= \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$ The first part of variables X_i, X_j $= \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$ The first part of variables X_i, X_j $= \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$ The first part of variables X_i, X_j The first part of variables $X_i,$

Maximum likelihood score overfits!

Information never hurts: $P(X_i, Pax_i) = H(X_i) - H(X_i|Pax_i)$ $P(X_i, Pax_i) = H(X_i) - H(X_i|Pax_i)$ $P(X_i, Pax_i) = H(X_i) - H(X_i|Pax_i)$ $P(X_i, Pax_i) = P(X_i) - P(X_i|Pax_i)$

Adding a parent always increases score!!!

10-708 – ©Carlos Guestrin 2006-200

Bayesian score

Prior distributions:
Over structures
Over parameters of a structure
Prior over structures given data:

Posterior over structures given data:

$$P(D)$$

$$P(D$$

Global parameter independence, d-separation and local prediction

Independencies in meta BN:

add prior vars to
the BN

$$P(\theta) = P(\theta_P) P(\theta_A) P(\theta_S|P_A) P(\theta_N|S) P(\theta_A|S)$$

Proposition: For fully observable data D, if prior satisfies global parameter independence, then

$$P(\theta \mid \mathcal{D}) = \prod_{i} P(\theta_{X_i \mid \mathbf{Pa}_{X_i}} \mid \mathcal{D})$$

// Sinus OHIS D115

Priors for BN CPTs

- (more when we talk about structure learning)
- Consider each CPT: P(X|U=u)
- Conjugate prior:

Conjugate prior:

□ <u>Dirichlet</u>(α_{X=1|U=u},..., α_{X=k|U=u}) Ξ Dirichlet((ονσί (χ=1, U=ψ---)
(ονσί (χ=ξ)

- More intuitive:

 - □ "prior data set" \underline{D} ' with \underline{m} ' equivalent sample size "prior counts": $(\chi_{=}\chi_{,}U_{=}\omega)$ or \underline{m} '. $(\chi_{=}\chi_{,}U_{=}\omega)$
 - □ prediction:

prediction:
$$\begin{bmatrix}
Count(X=2,U=a) + (ount'(X=2,U=a)) \\
Count(U=a) + (ount'(U=a))
\end{bmatrix}$$

Bayesian score and model complexity $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ True model: Structure 1: X and Y independent $Structure 2: X \to Y$ $P(Y=t|X=t) = 0.5 + \alpha$ $P(Y=t|X=f) = 0.5 - \alpha$ Data points split between P(Y=t|X=t) and P(Y=t|X=f)For fixed M, only worth it for large α Because posterior over parameter will be more diffuse with less data

Bayesian	а	decomposable	score
----------	---	--------------	-------

- $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- As with last lecture, assume:
 - □ Parameter independence
- Also, prior satisfies parameter modularity:
 - \Box If X_i has same parents in G and G', then parameters have same prior
- Finally, structure prior P(G) satisfies structure modularity
 - □ Product of terms over families
 - □ E.g., $P(G) \propto c^{|G|}$
- Bayesian score decomposes along families!

10-708 - ©Carlos Guestrin 2006-2008

BIC approximation of Bayesian score

- Bayesian has difficult integrals
- For Dirichlet prior, can use simple Bayes information criterion (BIC) approximation
 - □ In the limit, we can forget prior!
 - □ **Theorem**: for Dirichlet prior, and a BN with Dim(G) independent parameters, as $m\rightarrow\infty$:

$$\log P(D \mid \mathcal{G}) = \log P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) - \frac{\log m}{2} \text{Dim}(\mathcal{G}) + O(1)$$

10-708 - @Carlos Guestrin 2006-2008

13

BIC approximation, a decomposable score

- **BIC:** Score_{BIC}($\mathcal{G}: D$) = log $P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) \frac{\log m}{2}$ Dim(\mathcal{G})
- Using information theoretic formulation:

$$\mathsf{Score}_{\mathsf{BIC}}(\mathcal{G}:D) = m \sum_{i} \hat{I}(X_i, \mathbf{Pa}_{X_i,\mathcal{G}}) - m \sum_{i} \hat{H}(X_i) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_i \mid \mathbf{Pa}_{X_i,\mathcal{G}}))$$

10-708 – @Carlos Guestrin 2006-2008

Consistency of BIC and Bayesian scores

- Consistency is limiting behavior, says nothing about finite sample size!!!
- A scoring function is **consistent** if, for true model G*, as m→∞, with probability 1
 - □ G* maximizes the score
 - \square All structures **not I-equivalent** to G^* have strictly lower score
- **Theorem**: BIC score is consistent
- Corollary: the Bayesian score is consistent
- What about maximum likelihood score?

10-708 - @Carlos Guestrin 2006-2008

15

Priors for general graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
- What about prior over parameters, how do we represent it?
 - \square K2 prior: fix an α , $P(\theta_{Xi|PaXi})$ = Dirichlet(α ,..., α)
 - □ K2 is "inconsistent"

10-708 - @Carlos Guestrin 2006-2008

BDe prior

- Remember that Dirichlet parameters analogous to "fictitious samples"
- Pick a fictitious sample size m'
- For each possible family, define a prior distribution P(X_i,Pa_{Xi})
 - □ Represent with a BN
 - □ Usually independent (product of marginals)
- BDe prior:
- Has "consistency property":

10-708 - @Carlos Guestrin 2006-2008

17

Score equivalence

- If G and G' are I-equivalent then they have same score
- Theorem 1: Maximum likelihood score and BIC score satisfy score equivalence
- Theorem 2:
 - \Box If P(G) assigns same prior to I-equivalent structures (e.g., edge counting)
 - □ and parameter prior is dirichlet
 - □ then Bayesian score satisfies score equivalence if and only if prior over parameters represented as a BDe prior!!!!!!

10-708 - ©Carlos Guestrin 2006-2008

Chow-Liu for Bayesian score

■ Edge weight $w_{x_{j} \to x_{i}}$ is advantage of adding X_{j} as parent for X_{i}

- Now have a directed graph, need directed spanning forest
 - □ Note that adding an edge can hurt Bayesian score choose forest not tree
 - ☐ Maximum spanning forest algorithm works

10-708 - @Carlos Guestrin 2006-2008

19

Structure learning for general graphs

- In a tree, a node only has one parent
- Theorem:
 - □ The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d≥2
- Most structure learning approaches use heuristics
 - □ Exploit score decomposition
 - (Quickly) Describe two heuristics that exploit decomposition in different ways

10-708 – ©Carlos Guestrin 2006-2008

Fixed variable order 1

- Pick a variable order
 - \square e.g., $X_1,...,X_n$
- X_i can only pick parents in {X₁,...,X_{i-1}}
 - ☐ Any subset
 - ☐ Acyclicity guaranteed!
- Total score = sum score of each node

10-708 - @Carlos Guestrin 2006-2008

23

Fixed variable order 2

- Fix max number of parents to k
- For each i in order
 - \square Pick $\mathbf{Pa}_{\mathsf{X}_{\mathsf{i}}} \subseteq \{\mathsf{X}_{\mathsf{1}}, \ldots, \mathsf{X}_{\mathsf{i-1}}\}$
 - Exhaustively search through all possible subsets
 - Pa_{X_i} is maximum $U \subseteq \{X_1,...,X_{i-1}\}$ FamScore $(X_i|U:D)$
- Optimal BN for each order!!!
- Greedy search through space of orders:
 - ☐ E.g., try switching pairs of variables in order
 - ☐ If neighboring vars in order are switched, only need to recompute score for this pair
 - O(n) speed up per iteration

10-708 – @Carlos Guestrin 2006-2008

Bayesian model averaging

- So far, we have selected a single structure
- But, if you are really Bayesian, must average over structures
 - $$\label{eq:similar to averaging over parameters} \begin{split} & \quad \Box \text{ Similar to averaging over parameters} \\ & \quad \log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} | \mathcal{G}) d\theta_{\mathcal{G}} \end{split}$$
- Inference for structure averaging is very hard!!!
 - ☐ Clever tricks in reading

10-708 - @Carlos Guestrin 2006-2008

29

What you need to know about learning BN structures

- Decomposable scores
 - □ Data likelihood
 - □ Information theoretic interpretation
 - □ Bayesian
 - □ BIC approximation
- Priors
 - □ Structure and parameter assumptions
 - □ BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))
- Search techniques
 - Search through orders
 - Search through structures
- Bayesian model averaging

10-708 – ©Carlos Guestrin 2006-2008

Complexity of conditional probability queries 1

• How hard is it to compute P(X|E=e)?

Reduction - 3-SAT

$$(\overline{X}_1 \vee X_2 \vee X_3) \wedge (\overline{X}_2 \vee X_3 \vee X_4) \wedge \dots$$

0-708 – @Carlos Guestrin 2006-2008

Complexity of conditional probability queries 2

Inference is #P-complete, hopeless?

- Exploit structure!
- Inference is hard in general, but easy for many (real-world relevant) BN structures

Complexity for other inference questions

- Probabilistic inference
 - general graphs:
 - □ poly-trees and low tree-width:
- Approximate probabilistic inference
 - □ Absolute error:
 - □ Relative error:
- Most probable explanation (MPE)
 - □ general graphs:
 - □ poly-trees and low tree-width:
- Maximum a posteriori (MAP)
 - general graphs:
 - □ poly-trees and low tree-width:

10-708 - @Carlos Guestrin 2006-2008

37

Inference in BNs hopeless?

- In general, yes!
 - □ Even approximate!
- In practice
 - □ Exploit structure
 - □ Many effective approximation algorithms (some with guarantees)
- For now, we'll talk about exact inference
 - □ Approximate inference later this semester

10-708 – @Carlos Guestrin 2006-2008