

Decomposable score

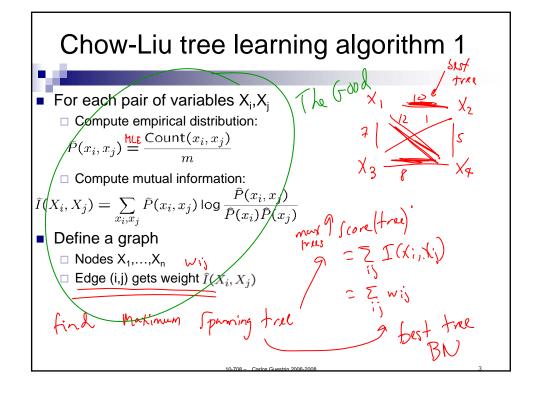
Log data likelihood

$$\log \hat{P}(\mathcal{D} \mid heta, \mathcal{G}) = m \sum_i \hat{I}(X_i, \mathbf{Pa}_{X_i}) - m \sum_i \hat{H}(X_i)$$

- Decomposable score:
 - □ Decomposes over families in BN (node and its parents)
 - □ Will lead to significant computational efficiency!!!

$$Score(G:D) = \sum_{i=1}^{n} FamScore(X_i | \mathbf{Pa}_{X_i} : D)$$

10-708 - Carlos Guestrin 2006-2008

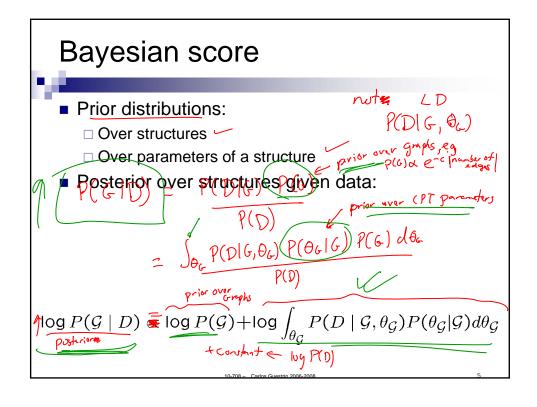


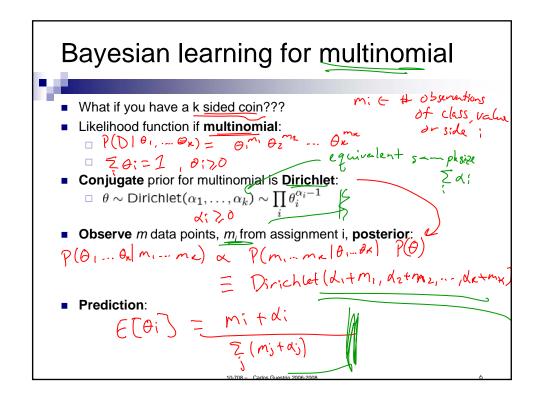
Maximum likelihood score overfits!

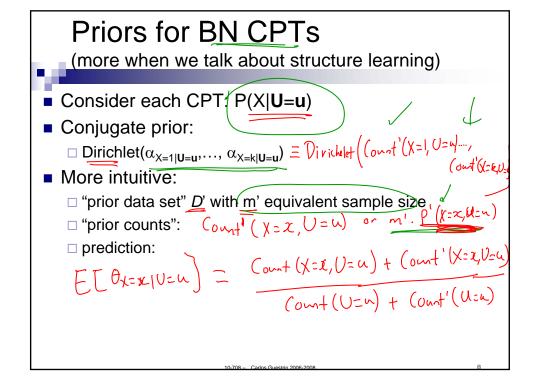
 $\begin{array}{c} \P \log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(X_{i}, \operatorname{Pa}_{X_{i}, \mathcal{G}}) - m \sum_{i} \hat{H}(X_{i}) \\ \hline & \operatorname{Information never hurts:} \\ \P \operatorname{\underline{I}(X_{i}, \operatorname{Pa}_{X_{i}})} = \operatorname{\underline{H}(X_{i})} - \operatorname{\underline{H}(X_{i}|\operatorname{Pa}_{X_{i}})} \\ \operatorname{\underline{H(A|B)}} \leq \operatorname{\underline{H}(A|C)} \\ \end{array}$

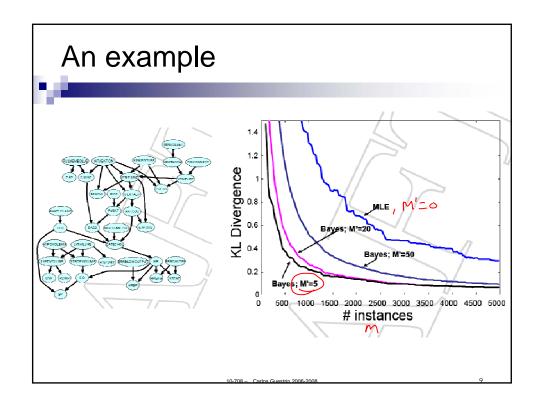
Adding a parent always increases score!!!

MLE => (omplete Graph



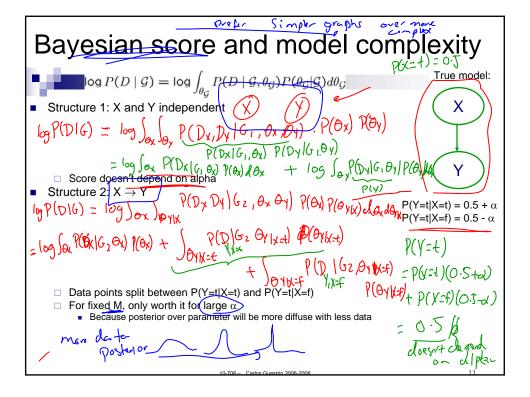


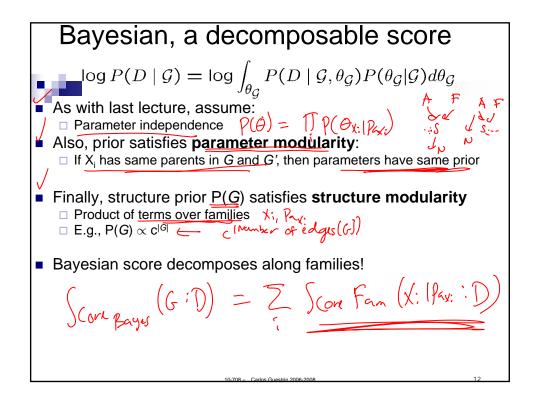


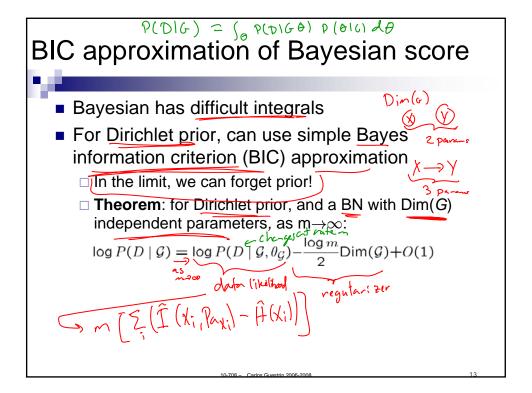


What you need to know about parameter learning

- Bayesian parameter learning:
 - □ motivation for Bayesian approach
 - □ Bayesian prediction
 - $\hfill\Box$ conjugate priors, equivalent sample size
 - \qed Bayesian learning \Rightarrow smoothing
- Bayesian learning for BN parameters
 - $\hfill \Box$ Global parameter independence
 - □ Decomposition of prediction according to CPTs
 - □ Decomposition within a CPT







■ BIC: $Score_{BIC}(\mathcal{G}:D) = \underbrace{log P(D \mid \mathcal{G}, \theta_{\mathcal{G}})} - \frac{log m}{2} Dim(\mathcal{G})$

Using information theoretic formulation:

$$Score_{BIC}(\mathcal{G}:D) = m \sum_{i} \hat{I}(X_{i}, \mathbf{Pa}_{X_{i},\mathcal{G}}) - m \sum_{i} \hat{H}(X_{i}) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_{i} \mid \mathbf{Pa}_{X_{i},\mathcal{G}}))$$

$$= \sum_{i} \left(m \hat{I}(X_{i}, \mathbf{Pa}_{X_{i},\mathcal{G}}) - m \hat{H}(X_{i}) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_{i} \mid \mathbf{Pa}_{X_{i},\mathcal{G}})) - m \hat{H}(X_{i}) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_{i} \mid \mathbf{Pa}_{X_{i},\mathcal{G}})) - m \hat{H}(X_{i}) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_{i} \mid \mathbf{Pa}_{X_{i},\mathcal{G}})) - m \hat{H}(X_{i}) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_{i} \mid \mathbf{Pa}_{X_{i},\mathcal{G}}))$$

Fansconepic (tilPaki,D)

Consistency of BIC and Bayesian scores

- Consistency is limiting behavior, says nothing about finite sample size!!!
- A scoring function is consistent if, for true model G*, as m→∞, with probability 1
 - □ G* maximizes the score
 - ☐ All structures **not I-equivalent** to G* have strictly lower score
- Theorem: BIC score is consistent
- Corollary: the Bayesian score is consistent
- What about maximum likelihood score? Mo

MCE: not Consistent

Scoremie (complete Graph) = Scoremie (b)

Penalty (complete Graph) > Penalty (complete Graph) > Penalty (b)

10-708 - Carlos Guestrin 2006-200

Priors for general graphs

- _
- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
- What about prior over parameters, how do we represent it?
 - \square K2 prior. fix an α , $P(\theta_{X||PaX|}) = Dirichlet(\alpha,...,\alpha)$

| K2 is "inconsistent" | Paki | " equivalent sample Size"

| O Kd |
I for each passign. pands	Kld
Vars	P(OriRei:u)Pirlaid...)
K2 is "inconsistent"	Value S
O Kd	
For each passign. pands	Kld
P(OriRei:u)Pirlaid...)	
K2 is "inconsistent"	Value S
O Kd	
O Kd	
Por each passign. pands	Kld
P(OriRei:u)Pirlaid...)	
K2 is "inconsistent"	Value S
O Kd	
O Kd	

10-708 - Carlos Guestrin 2006-200

BDe prior

- Remember that <u>Dirichlet</u> parameters analogous to "fictitious" samples"
- Pick a fictitious sample size m'
- For each possible family, define a prior distribution P(X_i,Pa_{xi})
- Represent with a BN

 Usually independent (product of marginals) P'(X;, Pax;) = P(X) \(\) P'(X)

 BDe prior:

 P(\(\Delta_{X}; = \omega_{X}) \)

 P(\(\Delta_{X}; = \omega_{X}; = \omega_{X}; = \omega_{X}) \)

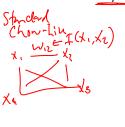
 P(\(\Delta_{X}; =
- Has "consistency property":

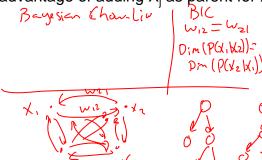
ScoreBDe (G:D) is consistent

Score equivalence

- If G and G'are I-equivalent then they have same score
- Theorem 1: Maximum likelihood score and BIC score satisfy score equivalence
- Theorem 2:
 - \square If P(G) assigns same prior to I-equivalent structures (e.g., edge counting)
 - □ and parameter prior is dirichlet
 - then Bayesian score satisfies score equivalence if and only in prior over parameters represented as a BDe prior!!!!!!

Chow-Liu for Bayesian score





- Now have a directed graph, need directed spanning forest
 - □ Note that adding an edge can hurt Bayesian score choose forest not tree
 - □ Maximum spanning forest algorithm works

10-708 - Carlos Guestrin 2006-2008

19