

### Decomposable score

Log data likelihood

$$\log \hat{P}(\mathcal{D} \mid heta, \mathcal{G}) = m \sum_i \hat{I}(X_i, \mathbf{Pa}_{X_i}) - m \sum_i \hat{H}(X_i)$$

- Decomposable score:
  - □ Decomposes over families in BN (node and its parents)
  - □ Will lead to significant computational efficiency!!!

$$Score(G:D) = \sum_{i=1}^{n} FamScore(X_i | \mathbf{Pa}_{X_i} : D)$$

10-708 - Carlos Guestrin 2006-2008



#### Maximum likelihood score overfits!

 $\begin{array}{c} \P \log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(X_{i}, \operatorname{Pa}_{X_{i}, \mathcal{G}}) - m \sum_{i} \hat{H}(X_{i}) \\ \hline & \operatorname{Information never hurts:} \\ \P \operatorname{\underline{I}(X_{i}, \operatorname{Pa}_{X_{i}})} = \operatorname{\underline{H}(X_{i})} - \operatorname{\underline{H}(X_{i}|\operatorname{Pa}_{X_{i}})} \\ \operatorname{\underline{H(A|B)}} \leq \operatorname{\underline{H}(A|C)} \\ \end{array}$ 

Adding a parent always increases score!!!

MLE => (omplete Graph









# What you need to know about parameter learning

- Bayesian parameter learning:
  - □ motivation for Bayesian approach
  - □ Bayesian prediction
  - $\hfill\Box$  conjugate priors, equivalent sample size
  - $\qed$  Bayesian learning  $\Rightarrow$  smoothing
- Bayesian learning for BN parameters
  - $\hfill \Box$  Global parameter independence
  - □ Decomposition of prediction according to CPTs
  - □ Decomposition within a CPT







■ BIC:  $Score_{BIC}(\mathcal{G}:D) = \underbrace{log P(D \mid \mathcal{G}, \theta_{\mathcal{G}})} - \frac{log m}{2} Dim(\mathcal{G})$ 

Using information theoretic formulation:

$$Score_{BIC}(\mathcal{G}:D) = m \sum_{i} \hat{I}(X_{i}, \mathbf{Pa}_{X_{i},\mathcal{G}}) - m \sum_{i} \hat{H}(X_{i}) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_{i} \mid \mathbf{Pa}_{X_{i},\mathcal{G}}))$$

$$= \sum_{i} \left( m \hat{I}(X_{i}, \mathbf{Pa}_{X_{i},\mathcal{G}}) - m \hat{H}(X_{i}) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_{i} \mid \mathbf{Pa}_{X_{i},\mathcal{G}})) - m \hat{H}(X_{i}) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_{i} \mid \mathbf{Pa}_{X_{i},\mathcal{G}})) - m \hat{H}(X_{i}) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_{i} \mid \mathbf{Pa}_{X_{i},\mathcal{G}})) - m \hat{H}(X_{i}) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_{i} \mid \mathbf{Pa}_{X_{i},\mathcal{G}}))$$

Fansconepic (tilPaki,D)

## Consistency of BIC and Bayesian scores

- Consistency is limiting behavior, says nothing about finite sample size!!!
- A scoring function is consistent if, for true model G\*, as m→∞, with probability 1
  - □ G\* maximizes the score
  - ☐ All structures **not I-equivalent** to G\* have strictly lower score
- Theorem: BIC score is consistent
- Corollary: the Bayesian score is consistent
- What about maximum likelihood score? Mo

MCE: not Consistent

Scoremie (complete Graph) = Scoremie (b)

Penalty (complete Graph) > Penalty (complete Graph) > Penalty (b)

10-708 - Carlos Guestrin 2006-200

Priors for general graphs

- \_
- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
- What about prior over parameters, how do we represent it?
  - $\square$  K2 prior. fix an  $\alpha$ ,  $P(\theta_{X||PaX|}) = Dirichlet(\alpha,...,\alpha)$

| K2 is "inconsistent" | Paki | " equivalent sample Size"

| O Kd |
| I for each passign. pands | Kld |
| Vars | P(OriRei:u)Pirlaid...) |
| K2 is "inconsistent" | Value S |
| O Kd |
| For each passign. pands | Kld |
| P(OriRei:u)Pirlaid...) |
| K2 is "inconsistent" | Value S |
| O Kd |
| O Kd |
| Por each passign. pands | Kld |
| P(OriRei:u)Pirlaid...) |
| K2 is "inconsistent" | Value S |
| O Kd |
| O Kd

10-708 - Carlos Guestrin 2006-200

### BDe prior



- Remember that <u>Dirichlet</u> parameters analogous to "fictitious" samples"
- Pick a fictitious sample size m'
- For each possible family, define a prior distribution P(X<sub>i</sub>,Pa<sub>xi</sub>)
- Represent with a BN

  Usually independent (product of marginals) P'(X;, Pax;) = P(X) \( \) P'(X)

  BDe prior:

  P(\( \Delta\_{X}; = \omega\_{X}) \)

  P(\( \Delta\_{X}; = \omega\_{X}; = \omega\_{X}; = \omega\_{X}) \)

  P(\( \Delta\_{X}; =
- Has "consistency property":

ScoreBDe (G:D) is consistent

### Score equivalence



- If G and G'are I-equivalent then they have same score
- Theorem 1: Maximum likelihood score and BIC score satisfy score equivalence
- Theorem 2:
  - $\square$  If P(G) assigns same prior to I-equivalent structures (e.g., edge counting)
  - □ and parameter prior is dirichlet
  - then Bayesian score satisfies score equivalence if and only in prior over parameters represented as a BDe prior!!!!!!

### Chow-Liu for Bayesian score







- Now have a directed graph, need directed spanning forest
  - □ Note that adding an edge can hurt Bayesian score choose forest not tree
  - □ Maximum spanning forest algorithm works

10-708 - Carlos Guestrin 2006-2008

19