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Decomposable score 

  Log data likelihood 

  Decomposable score: 
 Decomposes over families in BN (node and its parents) 
 Will lead to significant computational efficiency!!! 
 Score(G : D) = ∑i FamScore(Xi|PaXi : D) 
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Chow-Liu tree learning algorithm 1  

  For each pair of variables Xi,Xj 
  Compute empirical distribution: 

  Compute mutual information: 

  Define a graph 
  Nodes X1,…,Xn 
  Edge (i,j) gets weight 
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Chow-Liu tree learning algorithm 2 

  Optimal tree BN 
 Compute maximum weight

 spanning tree 
 Directions in BN: pick any

 node as root, breadth-first
-search defines directions 
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Can we extend Chow-Liu 1 

  Tree augmented naïve Bayes (TAN)
 [Friedman et al. ’97]  
  Naïve Bayes model overcounts, because

 correlation between features not
 considered 

  Same as Chow-Liu, but score edges with: 
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Can we extend Chow-Liu 2 

  (Approximately learning) models
 with tree-width up to k 
  [Chechetka & Guestrin ’07] 
 But, O(n2k+6) 



4 

10-708 – ©Carlos Guestrin 2006-2008 7 

What you need to know about
 learning BN structures so far 

  Decomposable scores 
 Maximum likelihood 
  Information theoretic interpretation 

  Best tree (Chow-Liu) 
  Best TAN 
  Nearly best k-treewidth (in O(N2k+6)) 
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Maximum likelihood score overfits! 

  Information never hurts: 

  Adding a parent always increases score!!! 
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Bayesian score 

  Prior distributions: 
 Over structures 
 Over parameters of a structure 

  Posterior over structures given data: 
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m 

Can we really trust MLE? 

  What is better? 
  3 heads, 2 tails 

  30 heads, 20 tails 

  3x1023 heads, 2x1023 tails 

  Many possible answers, we need distributions over possible
 parameters 
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Bayesian Learning 

  Use Bayes rule: 

  Or equivalently: 
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Bayesian Learning for Thumbtack 

  Likelihood function is simply Binomial: 

  What about prior? 
  Represent expert knowledge 
  Simple posterior form 

  Conjugate priors: 
  Closed-form representation of posterior (more details soon) 
  For Binomial, conjugate prior is Beta distribution 



7 

10-708 – ©Carlos Guestrin 2006-2008 13 

Beta prior distribution – P(θ) 

  Likelihood function: 
  Posterior: 
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Posterior distribution 

  Prior: 
  Data: mH heads and mT tails 

  Posterior distribution:  
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Conjugate prior 

  Given likelihood function P(D|θ) 

  (Parametric) prior of the form P(θ|α) is conjugate to
 likelihood function if posterior is of the same parametric
 family, and can be written as:  
  P(θ|α’), for some new set of parameters α’ 

  Prior: 
  Data: mH heads and mT tails (binomial likelihood) 

  Posterior distribution:  
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Using Bayesian posterior 

  Posterior distribution:  

  Bayesian inference: 
  No longer single parameter: 

  Integral is often hard to compute 
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Bayesian prediction of a
 new coin flip 

  Prior:  
  Observed mH heads, mT tails, what is

 probability of m+1 flip is heads? 
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Asymptotic behavior and equivalent
 sample size 

  Beta prior equivalent to extra
 thumbtack flips: 
    

  As m → 1, prior is “forgotten” 
  But, for small sample size, prior

 is important! 
  Equivalent sample size: 

  Prior parameterized by αH,αT, or 
  m’ (equivalent sample size) and α

    

Fix m’, change α


Fix α, change m’ 



10 

10-708 – ©Carlos Guestrin 2006-2008 19 

Bayesian learning corresponds to
 smoothing 

  m=0 ) prior parameter 
  m!1 ) MLE  

m 
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Bayesian learning for multinomial 

  What if you have a k sided coin??? 
  Likelihood function if multinomial: 

    
    

  Conjugate prior for multinomial is Dirichlet: 
    

  Observe m data points, mi from assignment i, posterior: 

  Prediction: 
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Bayesian learning for two-node BN 

  Parameters θX, θY|X 
  Priors: 

 P(θX): 
 P(θY|X): 
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Very important assumption on prior: 
Global parameter independence 

  Global parameter
 independence: 
 Prior over parameters is product

 of prior over CPTs 
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Global parameter independence,
 d-separation and local prediction 

Flu Allergy 

Sinus 

Headache Nose 

  Independencies in meta BN: 

  Proposition: For fully observable data
 D, if prior satisfies global parameter
 independence, then    
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Within a CPT 
  Meta BN including CPT parameters: 

  Are θY|X=t and θY|X=f d-separated given D? 
  Are θY|X=t and θY|X=f independent given D? 

  Context-specific independence!!! 
  Posterior decomposes: 
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Priors for BN CPTs  
(more when we talk about structure learning) 

  Consider each CPT: P(X|U=u) 
  Conjugate prior: 

 Dirichlet(αX=1|U=u,…, αX=k|U=u) 
  More intuitive: 

  “prior data set” D’ with m’ equivalent sample size 
  “prior counts”: 
 prediction: 
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An example 
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What you need to know about
 parameter learning 

  Bayesian parameter learning: 
 motivation for Bayesian approach 
 Bayesian prediction 
 conjugate priors, equivalent sample size 
 Bayesian learning ) smoothing  

  Bayesian learning for BN parameters 
 Global parameter independence 
 Decomposition of prediction according to CPTs 
 Decomposition within a CPT 
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Announcements 
  Project description is out on class website: 

  Individual or groups of two only 
  Suggested projects on the class website, or do something related to your

 research (preferable)  
  Must be something you started this semester 
  The semester goes really quickly, so be realistic (and ambitious ) 

 Must be related to Graphical Models!  

  Project deliverables: 
  one page proposal due Wednesday (10/8) 
  5-page milestone report Nov 3rd in class 
  Poster presentation on Dec. 1st, 3-6pm in NSH Atrium 
  Write up, 8-pages, due Dec 3rd by 3pm by email to instructors (no late days) 
  All write ups in NIPS format (see class website), page limits are strict 

  Objective: 
  Explore and apply concepts in probabilistic graphical models 
  Doing a fun project! 
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Bayesian score and model complexity 

X 

Y 

True model: 

P(Y=t|X=t) = 0.5 + α

P(Y=t|X=f) = 0.5 - α 

  Structure 1: X and Y independent 

  Score doesn’t depend on alpha 
  Structure 2: X ! Y 

  Data points split between P(Y=t|X=t) and P(Y=t|X=f) 
  For fixed M, only worth it for large α


  Because posterior over parameter will be more diffuse with less data 
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Bayesian, a decomposable score 

  As with last lecture, assume: 
  Local and global parameter independence 

  Also, prior satisfies parameter modularity: 
  If Xi has same parents in G and G’, then parameters have same prior 

  Finally, structure prior P(G) satisfies structure modularity 
  Product of terms over families 
  E.g., P(G) / c|G| 

  Bayesian score decomposes along families! 
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BIC approximation of Bayesian score 

  Bayesian has difficult integrals 
  For Dirichlet prior, can use simple Bayes

 information criterion (BIC) approximation 
  In the limit, we can forget prior! 
 Theorem: for Dirichlet prior, and a BN with Dim(G)

 independent parameters, as m!1:  
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BIC approximation, a
 decomposable score 

  BIC: 

  Using information theoretic formulation: 
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Consistency of BIC  and Bayesian
 scores 

  A scoring function is consistent if, for true model G*,
 as m!1, with probability 1 
 G* maximizes the score 
 All structures not I-equivalent to G* have strictly lower score 

  Theorem: BIC score is consistent 
  Corollary: the Bayesian score is consistent  
  What about maximum likelihood score? 

Consistency is limiting behavior, says nothing  
about finite sample size!!! 
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Priors for general graphs 

  For finite datasets, prior is important! 
  Prior over structure satisfying prior modularity 

  What about prior over parameters, how do we represent it? 
  K2 prior: fix an α, P(θXi|PaXi) = Dirichlet(α,…, α)  
  K2 is “inconsistent” 
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BDe prior 

  Remember that Dirichlet parameters analogous to “fictitious
 samples” 

  Pick a fictitious sample size m’ 
  For each possible family, define a prior distribution P(Xi,PaXi) 

  Represent with a BN 
  Usually independent (product of marginals) 

  BDe prior:  

  Has “consistency property”:  


