

Decomposable score

Log data likelihood

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(X_{i}, \mathbf{Pa}_{X_{i}}) - m \sum_{i} \hat{H}(X_{i})$$

- Decomposable score:
 - □ Decomposes over families in BN (node and its parents)
 - □ Will lead to significant computational efficiency!!!
 - $\Box \operatorname{Score}(G:D) = \sum_{i=1}^{n} \operatorname{FamScore}(X_{i}|\mathbf{Pa}_{X_{i}}:D)$

10-708 – @Carlos Guestrin 2006-2008

Chow-Liu tree learning algorithm 1

For each pair of variables
$$X_i, X_j$$

Compute empirical distribution:
$$\widehat{P}(x_i, x_j) \stackrel{\text{HLE}}{=} \frac{\text{Count}(x_i, x_j)}{m}$$

Compute mutual information:
$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i)\widehat{P}(x_j)}$$

Define a graph

Nodes X_1, \dots, X_n

Bedge (i,j) gets weight $\widehat{I}(X_i, X_j)$

Find Maximum Spaning true

10.708—8Carton Questin 2008-2008

Chow-Liu tree learning algorithm 2 og $\hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \hat{I}(x_i, \operatorname{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \hat{H}(X_i)$ Optimal tree BN Compute maximum weight spanning tree Directions in BN: pick any node as root, breadth-first -search defines directions wing (how-Lin and how and



Can we extend Chow-Liu 2

- (Approximately learning) models with tree-width up to k
 - □ [Chechetka & Guestrin '07]
 - \square But, $O(n^{2k+6})$

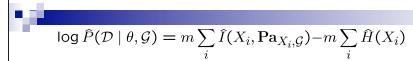
0-708 - ©Carlos Guestrin 2006-200

What you need to know about learning BN structures so far

- □ Maximum likelihood
- ☐ Information theoretic interpretation
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{2k+6}))

10-708 - @Carlos Guestrin 2006-2008

Maximum likelihood score overfits!



Information never hurts:

Adding a parent always increases score!!!

10.708 - @Carlos Guastrin 2006-2008

Bayesian score

- М
- Prior distributions:
 - □ Over structures
 - □ Over parameters of a structure
- Posterior over structures given data:

 $\log P(\mathcal{G}\mid D) \propto \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D\mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}}|\mathcal{G}) d\theta_{\mathcal{G}}$

10-708 - @Carlos Guestrin 2006-2008

9

Can we really trust MLE?

- Ŋ.
 - What is better?
 - □ 3 heads, 2 tails
 - □ 30 heads, 20 tails
 - \square 3x10²³ heads, 2x10²³ tails
- Many possible answers, we need distributions over possible parameters

10-708 - @Carlos Guestrin 2006-2008

Bayesian Learning

■ Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

10-708 - @Carlos Guestrin 2006-200

..

Bayesian Learning for Thumbtack

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

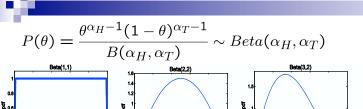
Likelihood function is simply Binomial:

$$P(\mathcal{D} \mid \theta) = \theta^{m_H} (1 - \theta)^{m_T}$$

- What about prior?
 - □ Represent expert knowledge
 - □ Simple posterior form
- Conjugate priors:
 - □ Closed-form representation of posterior (more details soon)
 - □ For Binomial, conjugate prior is Beta distribution

10-708 - @Carlos Guestrin 2006-2008

Beta prior distribution – $P(\theta)$



- - Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{m_H} (1 \theta)^{m_T}$
 - Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

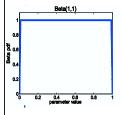
10-708 - @Carlos Guestrin 2006-2008

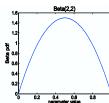
13

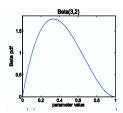
Posterior distribution

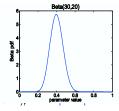
- Prior: $Beta(\alpha_H, \alpha_T)$
- Data: m_H heads and m_T tails
- Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(m_H + \alpha_H, m_T + \alpha_T)$$









10.708 - @Carlos Guestrin 2006-2008

Conjugate prior

- Prior: $Beta(\alpha_H, \alpha_T)$
- Data: m_H heads and m_T tails (binomial likelihood)
- Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(m_H + \alpha_H, m_T + \alpha_T)$$

- Given likelihood function $P(D|\theta)$
- (Parametric) prior of the form $P(\theta|\alpha)$ is **conjugate** to likelihood function if posterior is of the same parametric family, and can be written as:
 - \Box P($\theta | \alpha'$), for some new set of parameters α'

10-708 - @Carlos Guestrin 2006-2008

15

Using Bayesian posterior

Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(m_H + \alpha_H, m_T + \alpha_T)$$

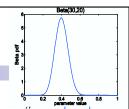
- Bayesian inference:
 - □ No longer single parameter:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

□ Integral is often hard to compute

10-708 – @Carlos Guestrin 2006-2008

Bayesian prediction of a new coin flip



- Prior:
- Observed m_H heads, m_T tails, what is probability of m+1 flip is heads?

10-708 - @Carlos Guestrin 2006-2008

17

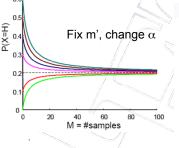
Asymptotic behavior and equivalent sample size

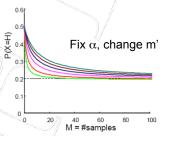
Beta prior equivalent to extra

thumbtack flips:
$$^{\square}\ E[\theta] = \frac{m_H + \alpha_H}{m_H + \alpha_H + m_T + \alpha_T}$$

- As $m \to \infty$, prior is "forgotten"
- But, for small sample size, prior is important!
- Equivalent sample size:
 - $\hfill\Box$ Prior parameterized by $\alpha_{\rm H}, \alpha_{\rm T},$ or
 - $\hfill\Box$ m' (equivalent sample size) and α

$$E[\theta] = \frac{m_H + \alpha m'}{m_H + m_T + m'}$$



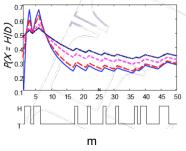


10-708 - ©Carlos Guestrin 2006-2008

Bayesian learning corresponds to smoothing

4

$$E[\theta] = \frac{m_H + \alpha m'}{m_H + m_T + m'}$$



- m=0 ⇒ prior parameter
- $m \rightarrow \infty \Rightarrow MLE$

10-708 - @Carlos Guastrin 2006-2001

19

Bayesian learning for multinomial

- What if you have a k sided coin???
- Likelihood function if multinomial:

• Conjugate prior for multinomial is Dirichlet:

 \square $heta\sim \mathsf{Dirichlet}(lpha_1,\ldots,lpha_k)\sim \prod_i heta_i^{lpha_i-1}$

- **Observe** *m* data points, m_i from assignment i, **posterior**:
- Prediction:

0-708 - ©Carlos Guestrin 2006-200

Bayesian learning for two-node BN

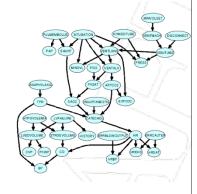
- Parameters θ_X, θ_{Y|X}
- Priors:
 - $\square P(\theta_{\mathsf{X}})$:
 - \square P($\theta_{Y|X}$):

10-708 - @Carlos Guestrin 2006-2008

21

Very important assumption on prior: Global parameter independence

- Global parameter independence:
 - □ Prior over parameters is product of prior over CPTs



10-708 - @Carlos Guestrin 2006-2008

Global parameter independence, d-separation and local prediction

Independencies in meta BN:

 Proposition: For fully observable data D, if prior satisfies global parameter independence, then

$$P(\theta \mid \mathcal{D}) = \prod_{i} P(\theta_{X_i \mid \mathbf{Pa}_{X_i}} \mid \mathcal{D})$$

10-708 - @Carlos Guestrin 2006-2008

--

Within a CPT

- Meta BN including CPT parameters:
- Are $\theta_{Y|X=t}$ and $\theta_{Y|X=f}$ d-separated given *D*?
- Are $\theta_{Y|X=t}$ and $\theta_{Y|X=f}$ independent given *D*?
 - □ Context-specific independence!!!
- Posterior decomposes:

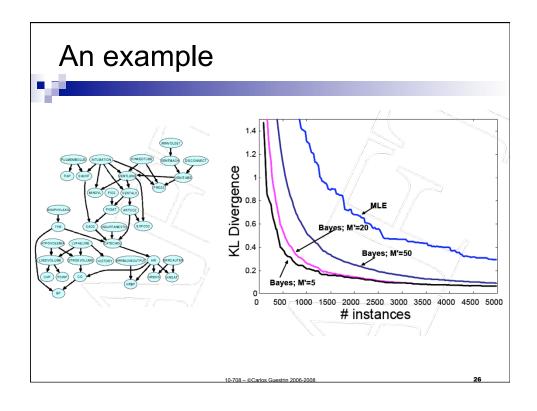
10-708 - @Carlos Guestrin 2006-2008

Priors for BN CPTs

(more when we talk about structure learning)

- Consider each CPT: P(X|U=u)
- Conjugate prior:
 - \square Dirichlet($\alpha_{X=1|U=u},..., \alpha_{X=k|U=u}$)
- More intuitive:
 - □ "prior data set" *D*' with m' equivalent sample size
 - ☐ "prior counts":
 - □ prediction:

10-708 - @Carlos Guestrin 2006-2008



What you need to know about parameter learning

- Bayesian parameter learning:
 - □ motivation for Bayesian approach
 - □ Bayesian prediction
 - □ conjugate priors, equivalent sample size
 - □ Bayesian learning ⇒ smoothing
- Bayesian learning for BN parameters
 - ☐ Global parameter independence
 - □ Decomposition of prediction according to CPTs
 - □ Decomposition within a CPT

10-708 - @Carlos Guestrin 2006-2008

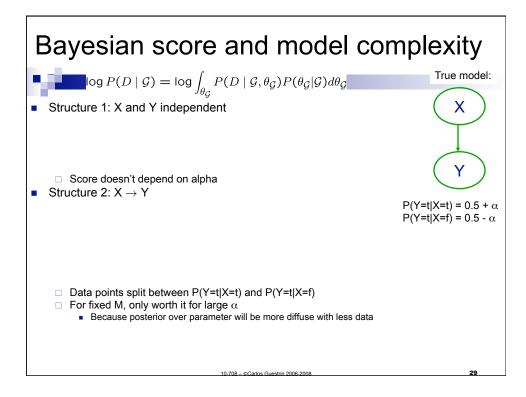
27

Announcements

Project description is out on class website:

- □ Individual or groups of two only
- Suggested projects on the class website, or do something related to your research (preferable)
 - Must be something you started this semester
 - The semester goes really quickly, so be realistic (and ambitious ②)
- Must be related to Graphical Models! ☺
- Project deliverables:
 - □ one page proposal due Wednesday (10/8)
 - □ 5-page milestone report Nov 3rd in class
 - □ Poster presentation on Dec. 1st, 3-6pm in NSH Atrium
 - ☐ Write up, 8-pages, due Dec 3rd by 3pm by email to instructors (no late days)
 - □ All write ups in NIPS format (see class website), page limits are strict
- Objective:
 - □ Explore and apply concepts in **probabilistic graphical models**
 - □ Doing a fun project!

10-708 - @Carlos Guestrin 2006-2008



Bayosian, a accomposable cons
$\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
As with last lecture, assume:
 Local and global parameter independence
Also, prior satisfies parameter modularity:
$\ \square$ If X_i has same parents in G and G' , then parameters have same prior
 Finally, structure prior P(G) satisfies structure modularity □ Product of terms over families □ E.g., P(G) ∝ c^G
Bayesian score decomposes along families!

Bayesian, a decomposable score

BIC approximation of Bayesian score

- Bayesian has difficult integrals
- For Dirichlet prior, can use simple Bayes information criterion (BIC) approximation
 - □ In the limit, we can forget prior!
 - □ **Theorem**: for Dirichlet prior, and a BN with Dim(G) independent parameters, as m $\rightarrow \infty$:

$$\log P(D \mid \mathcal{G}) = \log P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) - \frac{\log m}{2} \text{Dim}(\mathcal{G}) + O(1)$$

10-708 - @Carlos Guestrin 2006-2008

31

BIC approximation, a decomposable score

- BIC: Score_{BIC}($\mathcal{G}: D$) = log $P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) \frac{\log m}{2}$ Dim(\mathcal{G})
- Using information theoretic formulation:

$$\mathsf{Score}_{\mathsf{BIC}}(\mathcal{G}:D) = m \sum_{i} \hat{I}(X_i, \mathbf{Pa}_{X_i,\mathcal{G}}) - m \sum_{i} \hat{H}(X_i) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_i \mid \mathbf{Pa}_{X_i,\mathcal{G}}))$$

10-708 – @Carlos Guestrin 2006-2008

Consistency of BIC and Bayesian scores

- Consistency is limiting behavior, says nothing about finite sample size!!!
- A scoring function is **consistent** if, for true model G*, as m→∞, with probability 1
 - □ G* maximizes the score
 - □ All structures **not I-equivalent** to *G** have strictly lower score
- Theorem: BIC score is consistent
- Corollary: the Bayesian score is consistent
- What about maximum likelihood score?

10-708 - @Carlos Guestrin 2006-2008

33

Priors for general graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
- What about prior over parameters, how do we represent it?
 - \square K2 prior: fix an α , $P(\theta_{Xi|PaXi})$ = Dirichlet($\alpha,...,\alpha$)
 - □ K2 is "inconsistent"

10-708 - ©Carlos Guestrin 2006-2008

BDe prior

- Remember that Dirichlet parameters analogous to "fictitious samples"
- Pick a fictitious sample size m'
- For each possible family, define a prior distribution P(X_i,Pa_{Xi})
 - □ Represent with a BN
 - ☐ Usually independent (product of marginals)
- BDe prior:
- Has "consistency property":

10-708 - @Carlos Guestrin 2006-2008