

Goal

 Often we want expectations given samples $x[1] \dots x[M]$ from a distribution P.

$$E_P[f] pprox rac{1}{M} \sum_{m=1}^M f(\mathbf{x}[m])$$
 $\mathbf{x}[i] \sim P(\mathbf{X})$

$$P(\mathbf{X} = \mathbf{x}) \approx \frac{1}{M} \sum_{m=1}^{M} \mathbf{1}(\mathbf{x}[m] = \mathbf{x})$$

 $\mathbf{X} = {\mathbf{X}_1, \dots, \mathbf{X}_n}$ **Discrete Random Variables:**

Number of samples from P(X): $\,M\,$

Forward Sampling

- ·Sample nodes in topological order
- Assignment to parents selects P(X|Pa(X))
- •End result is one sample from P(X)
- •Repeat to get more samples
- **D** $\mathbf{x}[m, D] \sim (Easy : 0.6, Hard : 0.4)$
 - D = Easy
- $\mathbf{x}[m, I] \sim (Low : 0.7, High : 0.3)$ I = High
- $\mathbf{G} \qquad \mathbf{x}[m,G|D=d,I=i] \sim ([80,100]:0.9,[50,80):0.08,[0,50):0.02) \qquad \mathbf{G} = \textbf{[80,100]}$
- $\mathbf{x}[m, S|I = i] \sim (Bad : 0.2, Good : 0.8)$ S = Bad
- $\mathbf{x}[m,L|G=g] \sim (Fail:0.1,Pass:0.9)$ L = Pass

Multinomial Sampling

■ Given an assignment to its parents, X_i is a multinomial random variable.

$$\mathbf{x}[m, G|D = d, I = i] \sim (v_1 : 0.9, v_2 : 0.08, v_3 : 0.02)$$

$$U \sim Unif[0,1]$$

Sample-based probability estimates

- Have a set of *M* samples from P(X)
- Can estimate any probability by counting records:

Marginals:
$$\hat{P}(D=\mathrm{Easy},S=\mathrm{Bad}) = \frac{1}{M}\sum_{m=1}^{M}\mathbf{1}(x[m,D]=\mathrm{Easy},x[m,S]=\mathrm{Bad})$$

$$\begin{split} \textbf{Conditionals:} & \hat{P}(D = \mathrm{Easy}|S = \mathrm{Bad}) = \frac{\sum_{m=1}^{M} \mathbf{1}(\mathbf{x}[m,D] = \mathrm{Easy}, \mathbf{x}[m,S] = \mathrm{Bad})}{\sum_{m=1}^{M} \mathbf{1}(\mathbf{x}[m,S] = \mathrm{Bad})} \end{split}$$

Rejection sampling: once the sample and evidence disagree, throw away the sample. Rare events: If the evidence is unlikely, i.e., P(E = e) small, then the sample size for P(X|E=e) is low

Sample Complexity

- In many cases the probability estimate is the sum of indicator (Bernoulli) random variables:
 - ☐ Forward sampling for marginal probabilities.
 - □ Rejection sampling for conditional probabilities.
- The indicators are independent and identically distributed

Multiplicative Chernoff: $P(\hat{P}(\mathbf{x}) < (1+\epsilon)P(\mathbf{x})) \leq 2e^{-M \cdot P(\mathbf{x})\epsilon^2/3}$ (relative error)

Bound the r.h.s. by δ and solve for M.

Reducing relative error is hard if P(x) is small.

 $P(\mathbf{x})$ can be replaced by any marginal or conditional estimated by the sum of iid Bernoullis

10-708 - @Aiit Singh 2006-2008

- 7

Importance Sampling

- Limitations of forward and rejection sampling
 - What if the evidence is a rare event?
 - Either accept low accuracy estimate, or sample a lot more.
 - □ What if the model has no topological ordering?
 - Bayesian networks always have a T.O.

- Tree Markov Random Fields have a T.O.
- Arbitrary undirected graphical models may not have a T.O.
 - ☐ Hard to sample from P(X).
- Importance sampling addresses these issues.

10-708 - ©Aiit Singh 2006-2008

Importance Sampling

- Want to estimate P(X)
- Basic idea: pick Q(X) such that
 - □ KL(P||Q) is small.
 - \square Dominance: Q(x) > 0 whenever P(x) > 0.
 - □ Sampling from Q is easier than sampling from P.

$$E_{P(X)}[f(X)] \approx \frac{1}{M} \sum_{m=1}^{M} f(\mathbf{x}[m]) \frac{P(\mathbf{x}[m])}{Q(\mathbf{x}[m])} \text{ Assumes it's easy to evaluate P(x)}$$

$$f(\mathbf{X}) = \mathbf{1}(\mathbf{x}[m, D] = \text{Easy}) \implies$$

 $E_{P(\mathbf{X})}[f(\mathbf{X})] = P(D = \text{Easy})$

10-708 - @Aiit Singh 2006-2008

Mutilated Proposal Q(X)

- Fix the evidence distributions.
- Cut edges so that observed nodes have no parents.

Unlike forward sampling, we do not throw away samples = less work.

If Q is good, then the variance of the estimates is lower than forward or rejection sampling.

Variance of the estimates reduces at a rate of 1/M.

10-708 - ©Aiit Singh 2006-2008

Importance Sampling

- Can be generalized to deal with MRFs, where we can only easily get unnormalized probabilities.
 - ☐ Gibbs sampling is more common in undirected models.
 - ☐ Importance sampling yields a priori bounds on the sample complexity.

10-708 - @Aiit Sinah 2006-2008

11

Limitation of Forward Samplers

- Forward sampling, rejection sampling, and importance sampling are all forward samplers
 - ☐ Fixing an evidence node only allows it to directly affect its descendents.

10-708 - ©Aiit Singh 2006-2008

Markov Blanket Approaches

- Forward Samplers: Compute weight of X_i given assignment to ancestors in topological ordering.
- Markov Blanket Samplers: Compute weight of X_i given assignment to its Markov Blanket.

Forward Sampler

Markov Blanket Sampler

Gibbs Sampling

- We will focus on Gibbs Sampling
 - ☐ The most common Markov Blanket sampler
 - Works for directed and undirected models
 - □ Exploits independencies in graphical models
 - ☐ A common form of Markov Chain Monte Carlo

Gibbs Sampling

- 1. Let **X** be the non-evidence variables
- 2. Generate an initial assignment $\xi^{(0)}$
- 3. For t = 1..MAXITER
 - 1. $\xi^{(t)} = \xi^{(t-1)}$
 - 2. For each X_i in X
 - 1. \mathbf{u}_i = Value of variables \mathbf{X} $\{X_i\}$ in sample $\xi^{(t)}$

- 3. Sample $x_i^{(t)}$ from $P(X_i | \mathbf{u}_i)$
- 4. Set the value of $X_i = x_i^{(t)}$ in $\xi^{(t)}$
- 4. Samples are taken from $\xi^{(0)} \dots \xi^{(T)}$

10-708 - @Aiit Singh 2006-2008

15

Computing $P(X_i | \mathbf{u}_i)$

- The major task in designing a Gibbs sampler is deriving P(X_i | u_i).
- Use conditional independence
 - $\square X_i \perp X_j \mid MB(X_i)$ for all X_i in **X** $MB(X_i)$ $\{X_i\}$

$$\begin{split} \mathbf{P(X|Y=y)} &= \quad \frac{P(X,Y=y)}{P(Y=y)} \\ &= \quad \frac{\sum_z P(X,Y=y,Z=z)}{\sum_x \sum_z P(X=x,Y=y,Z=z)} \end{split}$$

P(Y|X = x) = CPT Lookup

10-708 - ©Aiit Singh 2006-2008

(Simple) Image Segmentation

- Noisy grayscale image.
- Label each pixel as on/off.
- Model using a pairwise MRF.

$$P(x) = \frac{1}{Z} \prod_{i} \Phi(x_i) \prod_{(j,k) \in E} \Psi(x_j, x_k)$$

$$\Phi(x_i) = exp\left\{-\frac{(y_i - \mu_{x_i})^2}{2\sigma_{x_i}^2}\right\}$$

$$\Psi(x_i, x_j) = \exp\left\{-\beta(x_i - x_j)^2\right\}$$

Gibbs Sampling

$$P(x) = rac{1}{Z} \prod_i \Phi(x_i) \prod_{(j,k) \in E} \Psi(x_j,x_k)$$

$$\Phi(x_i) = \exp\left\{-\frac{(y_i - \mu_{x_i})^2}{2\sigma_{x_i}^2}\right\}$$

$$\Psi(x_i, x_j) = \exp\left\{-\beta(x_i - x_j)^2\right\}$$

$$P(x_i|x_1,\ldots x_{i-1},x_{i+1},\ldots,x_n) =$$

$$=\frac{P(x_1,\ldots,x_n)}{P(x_1,\ldots,x_{n'-1},x_{n'+1},\ldots,x_n)}$$

$$P(x) = \frac{1}{Z} \prod_{i} \Phi(x_i) \prod_{(j,k) \in E} \Psi(x_j, x_k)$$

$$\sum_{\substack{i \in \mathcal{I} \\ \text{for } i \in \mathcal{I}}} \underbrace{\prod_{i} \Phi(x_i) \prod_{\substack{(j,k) \in E}} \Psi(x_j, x_k)}_{\substack{(j,k) \in E}}$$

Markov Chain Interpretation

- The state space consists of assignments to X.
- P(x_i | **u**_i) are the transition probability (neighboring states differ only in one variable)
- Given the transition matrix you could compute the exact stationary distribution
 - $\hfill\Box$ Typically impossible to store the transition matrix.
- Gibbs does not need to store the transition matrix!

10-708 - @Aiit Sinah 2006-2008

What you need to know

- Forward sampling approaches
 - □ Forward Sampling / Rejection Sampling
 - Generate samples from P(X) or P(X|e)
 - ☐ Likelihood Weighting / Importance Sampling
 - Sampling where the evidence is rare
 - Fixing variables lowers variance of samples when compared to rejection sampling.
 - ☐ Useful on Bayesian networks & tree Markov networks
- Markov blanket approaches
 - □ Gibbs Sampling
 - Works on any graphical model where we can sample from P(X_i | rest).
 - Markov chain interpretation.
 - Samples are independent when the Markov chain converges.
 - Convergence heuristics, burn-in, thinning.

10-708 - @Aiit Singh 2006