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Approximate Inference by 
Sampling 

Graphical Models – 10708 
Ajit Singh 
Carnegie Mellon University 

November 10th, 2008 

Readings: 
 K&F: 10.1, 10.2, 10.3 (Particle Based Approximate Inference) 

What you’ve learned so far 

  VE & Junction Trees 
 Exact inference 
 Exponential in tree-width 

  Belief Propagation, Mean Field 
 Approximate inference for marginals/conditionals 
 Fast, but can get inaccurate estimates 

  Sample-based Inference 
 Approximate inference for marginals/conditionals 
 With “enough” samples, will converge to the right 

answer (or a high accuracy estimate) 
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(If you want to be cynical, replace “enough” with “ridiculously many”) 
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Goal 

  Often we want expectations given samples         
x[1] … x[M] from a distribution P. 

P (X = x) ≈ 1
M

M∑

m=1

1(x[m] = x)

EP [f ] ≈ 1
M

M∑

m=1

f(x[m])

X = {X1, . . . ,Xn}Discrete Random Variables: 
Number of samples from P(X): M

x[i] ∼ P (X)
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Forward Sampling 

• Sample nodes in topological order 

D

I

G

S

L

x[m, D] ∼ (Easy : 0.6, Hard : 0.4)

x[m, I] ∼ (Low : 0.7, High : 0.3)

x[m, G|D = d, I = i] ∼ ([80, 100] : 0.9, [50, 80) : 0.08, [0, 50) : 0.02)

x[m, S|I = i] ∼ (Bad : 0.2, Good : 0.8)

x[m, L|G = g] ∼ (Fail : 0.1, Pass : 0.9)

D = Easy 

I = High 

G = [80,100]

S = Bad

L = Pass

• End result is one sample from P(X) 

• Assignment to parents selects P(X|Pa(X)) 

• Repeat to get more samples 
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Multinomial Sampling 

  Given an assignment to its parents, Xi is a 
multinomial random variable. 
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x[m, G|D = d, I = i] ∼ (v1 : 0.9, v2 : 0.08, v3 : 0.02)

0.90 0.08 0.02

v1 v2 v3

U  ~ Unif[0,1]

Sample-based probability estimates 

  Have a set of M samples from P(X) 
  Can estimate any probability by counting records: 
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P̂ (D = Easy, S = Bad) =
1
M

M∑

m=1

1(x[m, D] = Easy, x[m, S] = Bad)

P̂ (D = Easy|S = Bad) =
∑M

m=1 1(x[m, D] = Easy,x[m, S] = Bad)
∑M

m=1 1(x[m, S] = Bad)

Marginals: 

Conditionals: 

Rejection sampling: once the sample and evidence disagree, throw away the sample. 

Rare events: If the evidence is unlikely, i.e., P(E = e) small, then the sample size for        
P(X|E=e) is low 
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Sample Complexity 

  In many cases the probability estimate is the 
sum of indicator (Bernoulli) random variables: 
 Forward sampling for marginal probabilities. 
 Rejection sampling for conditional probabilities. 

  The indicators are independent and identically 
distributed 
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Additive Chernoff: 
(absolute error) 

Multiplicative Chernoff: 
(relative error) 

P (P (x)− ε < P̂ (x) < P (x) + ε) ≤ 2e−2Mε2

P (P̂ (x) < (1 + ε)P (x)) ≤ 2e−M ·P (x)ε2/3

Bound the r.h.s. by δ and solve for M. 

Reducing relative error is hard if P(x) is small. 

P (x)          can be replaced 
by any marginal or 
conditional estimated by 
the sum of iid Bernoullis 

Importance Sampling 

  Limitations of forward and rejection sampling 
 What if the evidence is a rare event ? 

  Either accept low accuracy estimate, or sample a lot more. 

 What if the model has no topological ordering ? 
  Bayesian networks always have a T.O. 
  Tree Markov Random Fields have a T.O. 
  Arbitrary undirected graphical models may not have a T.O. 

  Hard to sample from P(X). 

  Importance sampling addresses these issues. 
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Importance Sampling 

  Want to estimate P(X) 
  Basic idea: pick Q(X) such that 

 KL(P||Q) is small. 
 Dominance: Q(x) > 0 whenever P(x) > 0. 
 Sampling from Q is easier than sampling from P. 
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EP (X)[f(X)] ≈ 1
M

M∑

m=1

f(x[m])
P (x[m])
Q(x[m])

Assumes it’s easy 
to evaluate P(x) 

f(X) = 1(x[m, D] = Easy) =⇒
EP (X)[f(X)] = P (D = Easy)

Mutilated Proposal Q(X) 

  Fix the evidence 
distributions. 

  Cut edges so that 
observed nodes have 
no parents. 
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Unlike forward sampling, we do not throw away samples = less work. 

Variance of the estimates reduces at a rate of 1/M. 

If Q is good, then the variance of the estimates is lower than forward or 
rejection sampling. 
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Importance Sampling 

  Can be generalized to deal with MRFs, where 
we can only easily get unnormalized 
probabilities.  
 Gibbs sampling is more common in undirected 

models. 
  Importance sampling yields a priori bounds on the 

sample complexity. 
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Limitation of Forward Samplers 

  Forward sampling, rejection sampling, and 
importance sampling are all forward samplers 
 Fixing an evidence node only allows it to directly 

affect its descendents. 
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Markov Blanket Approaches 

  Forward Samplers: Compute weight of Xi given 
assignment to ancestors in topological ordering. 

  Markov Blanket Samplers: Compute weight of Xi given 
assignment to its Markov Blanket. 

Forward Sampler Markov Blanket Sampler 
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Gibbs Sampling 

  We will focus on Gibbs Sampling 
 The most common Markov Blanket sampler 
 Works for directed and undirected models 
 Exploits independencies in graphical models 
 A common form of Markov Chain Monte Carlo 
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Gibbs Sampling 

1.  Let X be the non-evidence variables 
2.  Generate an initial assignment ξ(0)  
3.  For t = 1..MAXITER 

1.  ξ(t) = ξ(t-1) 

2.  For each Xi in X 
1.  ui = Value of variables X - {Xi} in sample ξ(t)

 

2.  Compute P(Xi | ui) 
3.  Sample xi

(t) from P(Xi | ui) 
4.  Set the value of Xi = xi

(t) in ξ(t)  

4.  Samples are taken from ξ(0) … ξ(T)  
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Computing P(Xi | ui) 

  The major task in designing a Gibbs sampler is 
deriving P(Xi | ui). 

  Use conditional independence 
 Xi ⊥ Xj | MB(Xi) for all Xj in X - MB(Xi) - {Xi} 

P(X|Y = y)  

P(Y|X = x) =  

=
P (X, Y = y)
P (Y = y)

=
∑

z P (X, Y = y, Z = z)∑
x

∑
z P (X = x, Y = y, Z = z)

CPT Lookup
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(Simple) Image Segmentation 
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  Noisy grayscale 
image. 

  Label each pixel 
as on/off. 

  Model using a 
pairwise MRF. 10 20 30 40 50 60
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Φ(xi) = exp

{
− (yi − µxi)2

2σ2
xi

}

Ψ(xi, xj) = exp
{
−β(xi − xj)2

}
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Gibbs Sampling 

Φ(xi) = exp

{
− (yi − µxi)2

2σ2
xi

}

Ψ(xi, xj) = exp
{
−β(xi − xj)2

}

xi ∈ {1, 2} yi ∈ R
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Gibbs Sampling 
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MAP by Sampling 

  Generate a few samples from the posterior  
  For each Xi the MAP is the majority assignment 
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Markov Chain Interpretation 

  The state space consists of assignments to X.  
  P(xi | ui) are the transition probability 

(neighboring states differ only in one variable) 
  Given the transition matrix you could compute 

the exact stationary distribution 
 Typically impossible to store the transition matrix. 

  Gibbs does not need to store the transition 
matrix ! 
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Convergence 

  Not all samples ξ(0) … ξ(T) are independent. Consider 
one marginal P(xi|ui). 

  Burn-in 
  Thinning 
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What you need to know 

  Forward sampling approaches 
  Forward Sampling / Rejection Sampling 

  Generate samples from P(X) or P(X|e) 
  Likelihood Weighting / Importance Sampling 

  Sampling where the evidence is rare 
  Fixing variables lowers variance of samples when compared to rejection 

sampling. 
  Useful on Bayesian networks & tree Markov networks 

  Markov blanket approaches 
  Gibbs Sampling 

  Works on any graphical model where we can sample from P(Xi | rest). 
  Markov chain interpretation. 
  Samples are independent when the Markov chain converges. 
  Convergence heuristics, burn-in, thinning. 


