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November 10th, 2008

What you've learned so far
" JE
m VE & Junction Trees
Exact inference
Exponential in tree-width
m Belief Propagation, Mean Field

Approximate inference for marginals/conditionals
Fast, but can get inaccurate estimates

m Sample-based Inference
Approximate inference for marginals/conditionals

With “enough” samples, will converge to the right
answer (or a high accuracy estimate)

(If you want to be cynical, replace “enough” with “ridiculously many”)
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Goal

m Often we want expectations given samples
X[1] ... Xx[M] from a distribution P.

Eplf]l~ — > f(x[m]) x[i] ~ P(X)

Discrete Random Variables: X ={Xy..., X}
Number of samples from P(X): M
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Forward Sampling

[(Easy | Hard | [ tow [ High |

Loefos ] [orloal] «Sample nodes in topological order

(Cmen) (o) ,
*Assignment to parents selects P(X|Pa(X))

Int

Low.
Low

CRETEIET e g *End result is one sample from P(X)

Easy 03 04 03

High

Eay [ 08 ost |00 *Repeat to get more samples

High

Hard 05 03 0.2

Grade | Fail | Pass

180.100] | 01 | 09

[5080) | 04 | 06
[0.50) [ 099 | 001

D x[m,D]~ (Easy:0.6,Hard:0.4) D =Easy

| x[m, I] ~ (Low : 0.7, High : 0.3) I = High

x[m, G|D = d, I = i] ~ ([80,100] : 0.9,[50,80) : 0.08,[0,50) : 0.02) G = [80,100]
x[m, S|I =i] ~ (Bad :0.2,Good : 0.8) S =Bad

r oo

x[m, L|G = g| ~ (Fail : 0.1, Pass : 0.9) L = Pass
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Multinomial Sampling
" JE
m Given an assignment to its parents, X is a
multinomial random variable.

x[m,G|D =d,I =i] ~ (v1:0.9,v2 : 0.08,v3 : 0.02)

U - Unif[0,1]
| |
| |
| |
vy | Vo 'L?)
- T I
|
- e
0.90 10.08 1 0.02
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Sample-based probability estimates
" JEE

m Have a set of M samples from P(X)

m Can estimate any probability by counting records:

Marginals: 1

M
P(D = Easy, S = Bad) = i Z 1(x[m, D] = Easy, z[m, S] = Bad)

m=1

Conditionals: S M 1(x[m, D] = Easy, x[m, S] = Bad)

P(D = Easy|S = Bad) = fozl L(xm. 5] = Bad)

Rejection sampling: once the sample and evidence disagree, throw away the sample.

Rare events: If the evidence is unlikely, i.e., P(E = e) small, then the sample size for
P(X|E=e) is low
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Sample Complexity
* JE
m In many cases the probability estimate is the
sum of indicator (Bernoulli) random variables:
Forward sampling for marginal probabilities.
Rejection sampling for conditional probabilities.

m The indicators are independent and identically
distributed
Additive Chernoff: P(P(x) — € < P(x) < P(x) +¢) < 2¢~2M¢

(absolute error)

Multiplicative Chernoff: P(P(x) < (1 + ¢)P(x)) < 9e~M-P()e*/3

(relative error)

Bound the r.h.s. by & and solve for M. P(x) can be replaced

by any marginal or
Reducing relative error is hard if P(x) is small. conditional estimated by
the sum of iid Bernoullis
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Importance Sampling
" JEE
m Limitations of forward and rejection sampling

What if the evidence is a rare event ?
m Either accept low accuracy estimate, or sample a lot more.

What if the model has no topological ordering ? g:g

= Bayesian networks always have a T.O.

= Tree Markov Random Fields have a T.O.

= Arbitrary undirected graphical models may not have a T.O.
Hard to sample from P(X).

m Importance sampling addresses these issues.
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Importance Sampling
* JEE
m Want to estimate P(X)

m Basic idea: pick Q(X) such that

KL(P||Q) is small.
Dominance: Q(x) > 0 whenever P(x) > 0.
Sampling from Q is easier than sampling from P.

M it's eas
Broo (0] ~ = 32 i) DI it
m=1

Q(x[m])

f(X) = 1(x[m, D] = Easy) —
Epx)lf(X)] = P(D = Easy)
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Mutilated Proposal Q(X)
* JEE—

Bl [T m Fix the evidence
OGS distributions.
m Cut edges so that
s () observed nodes have

Int Bad Good n O pa re n tS -

Low 0.95 0.05
High | 02 0.8

Letter

Grade | Fail Pass

[80,100] | 0.1 0.9

[50,80) | 0.4 | 06

050) | 0.99 | 0.01

Unlike forward sampling, we do not throw away samples = less work.

If Q is good, then the variance of the estimates is lower than forward or
rejection sampling.
Variance of the estimates reduces at a rate of 1/M.
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Importance Sampling
" JE
m Can be generalized to deal with MRFs, where

we can only easily get unnormalized
probabilities.

Gibbs sampling is more common in undirected
models.

Importance sampling yields a priori bounds on the
sample complexity.

Limitation of Forward Samplers
" JEE
m Forward sampling, rejection sampling, and

importance sampling are all forward samplers

Fixing an evidence node only allows it to directly
affect its descendents.
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Markov Blanket Approaches
* JE

m Forward Samplers: Compute weight of X; given
assignment to ancestors in topological ordering.

m Markov Blanket Samplers: Compute weight of X; given
assignment to its Markov Blanket.

Forward Sampler Markov Blanket Sampler
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Gibbs Sampling
* JEE—
m We will focus on Gibbs Sampling
The most common Markov Blanket sampler
Works for directed and undirected models
Exploits independencies in graphical models
A common form of Markov Chain Monte Carlo
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Gibbs Sampling

= JEE
1. Let X be the non-evidence variables
2. Generate an initial assignment £©)

3. Fort=1.MAXITER

gD = gt1)

For each X;in X

1. u;= Value of variables X - {X;} in sample £
Y 2 Compute P(X; | u))

3. Sample x® from P(X; | u;)

4. Set the value of X; = x{¥ in EV

4. Samples are taken from €@ _. &M
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Computing P(X: | u))

m The major task in designing a Gibbs sampler is
deriving P(X; | u)).
m Use conditional independence
XL X; | MB(X;) for all X; in X - MB(X) - {X;}

= v) — P(X,Y:y)
PIYEN= Ty =y
/®\ _ Y. PX,Y =y, Z =2z
@ @ - ZIZZP(szayzy,Z:Z)

1oz ] P(Y]X=x)= CPT Lookup
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(Simple) Image Segmentation
" JEE

m Noisy grayscale
image.

m Label each pixel
as on/off.

m Model using a
pairwise MRF.

=%H¢m)ﬂ V(z;, ax)

(4,k)EE

®(z;) = exp {_M}

2
20,

U(z;,25) = exp {—B(z; — ;)% }

17

* JE—
P(zi|z1,... Tic1,Tig1y. -, Tn) =
PCAy - - Xn>
= 'PC%‘,,_)(,.I\__‘/X{.‘_l t ~-‘/\f<(\>
|
i‘f,r & (6) T Y lxjixe)
1 (.\31[» GE
1
S ICORIR RS z T3 04) T “P(x;m(@
i (4,k)EE 2 rl/ 3 LJMC\QT
b (z;) =e$p{—(yi Q_Jl;xl) }

i @(X‘LB \VCXWQ
U (i, 25) = exp {—B(z; — ;)% } Q N (s, )
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Gibbs Sampling

.
I--
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MAP by Sampling
" JEE
m Generate a few samples from the posterior
m For each X, the MAP is the majority assignment

majority
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Markov Chain Interpretation
* JEE
m The state space consists of assignments to X.
m P(x; | u;) are the transition probability
(neighboring states differ only in one variable)

m Given the transition matrix you could compute
the exact stationary distribution
Typically impossible to store the transition matrix.
m Gibbs does not need to store the transition
matrix !

21

Convergence
* JEE

m Not all samples £© ... €M are independent. Consider

one marginal P(x;|u;). ﬂ‘

1
TE l\t’: Aol "MAV‘A xvv- V)\V 'W,\VAA'\ osl(,(\\ Ahov™
P (%[ pew e
N\O&LS
0 =°° Lyl .
R t p oo 3@) T
m Burn-in
m Thinning

22
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What you need to know
“ JE
m Forward sampling approaches
Forward Sampling / Rejection Sampling
= Generate samples from P(X) or P(X|e)
Likelihood Weighting / Importance Sampling
= Sampling where the evidence is rare
= Fixing variables lowers variance of samples when compared to rejection
sampling.
Useful on Bayesian networks & tree Markov networks
m Markov blanket approaches
Gibbs Sampling
= Works on any graphical model where we can sample from P(X; | rest).
= Markov chain interpretation.

= Samples are independent when the Markov chain converges.
= Convergence heuristics, burn-in, thinning.
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