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Parameter learning in  
Markov nets 

Graphical Models – 10708 
Carlos Guestrin 
Carnegie Mellon University 

November 17th, 2008 

Readings: 
 K&F: 19.1, 19.2, 19.3, 19.4 
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Learning Parameters of a BN 

  Log likelihood decomposes: 

  Learn each CPT independently 
  Use counts 
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Log Likelihood for MN 
  Log likelihood of the data: 
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Log Likelihood doesn’t decompose 
for MNs 
  Log likelihood: 

  A concave problem 
 Can find global optimum!! 

  Term log Z doesn’t decompose!! 
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Derivative of Log Likelihood for MNs 
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Derivative of Log Likelihood for MNs 2 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 



4 

10-708 – ©Carlos Guestrin 2006-2008 7 

Derivative of Log Likelihood for MNs 
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Intelligence   Derivative: 

  Computing derivative requires inference: 

  Can optimize using gradient ascent 
 Common approach 
 Conjugate gradient, Newton’s method,… 

  Let’s also look at a simpler solution 
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Iterative Proportional Fitting (IPF) 
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  Setting derivative to zero: 

  Fixed point equation: 

  Iterate and converge to optimal parameters 
  Each iteration, must compute:  
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Log-linear Markov network 
(most common representation) 

  Feature is some function φ[D] for some subset of variables D 
  e.g., indicator function 

  Log-linear model over a Markov network H: 
  a set of features φ1[D1],…, φk[Dk] 

  each Di is a subset of a clique in H 
  two φ’s can be over the same variables 

  a set of weights w1,…,wk 
  usually learned from data 

     
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Learning params for log linear models –  
Gradient Ascent  

  Log-likelihood of data: 

  Compute derivative & optimize 
  usually with conjugate gradient ascent 
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Derivative of log-likelihood 1 –  
log-linear models 
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Derivative of log-likelihood 2 –  
log-linear models 
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Learning log-linear models with 
gradient ascent 

  Gradient: 

  Requires one inference computation per  

  Theorem: w is maximum likelihood solution iff 
    

  Usually, must regularize 
  E.g., L2 regularization on parameters 
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What you need to know about 
learning MN parameters? 

  BN parameter learning easy 
  MN parameter learning doesn’t decompose! 

  Learning requires inference! 

  Apply gradient ascent or IPF iterations to obtain 
optimal parameters 
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Conditional Random Fields 

Graphical Models – 10708 
Carlos Guestrin 
Carnegie Mellon University 

November 17th, 2008 

Readings: 
 K&F: 19.3.2 
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Generative v. Discriminative 
classifiers – A review 

  Want to Learn: h:X  Y 
  X – features 
  Y – target classes 

  Bayes optimal classifier – P(Y|X) 
  Generative classifier, e.g., Naïve Bayes: 

  Assume some functional form for P(X|Y), P(Y) 
  Estimate parameters of P(X|Y), P(Y) directly from training data 
  Use Bayes rule to calculate P(Y|X= x) 
  This is a ‘generative’ model 

  Indirect computation of P(Y|X) through Bayes rule 
  But, can generate a sample of the data, P(X) = ∑y P(y) P(X|y) 

  Discriminative classifiers, e.g., Logistic Regression: 
  Assume some functional form for P(Y|X) 
  Estimate parameters of P(Y|X) directly from training data 
  This is the ‘discriminative’ model 

  Directly learn P(Y|X) 
  But cannot obtain a sample of the data, because P(X) is not available 
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Log-linear CRFs 
(most common representation) 

  Graph H: only over hidden vars Y1,..,Yn 
  No assumptions about dependency on observed vars X 
  You must always observe all of X 

  Feature is some function φ[D] for some subset of variables D 
  e.g., indicator function,   

  Log-linear model over a CRF H: 
  a set of features φ1[D1],…, φk[Dk] 

  each Di is a subset of a clique in H 
  two φ’s can be over the same variables 

  a set of weights w1,…,wk 
  usually learned from data 

     
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Learning params for log linear CRFs –  
Gradient Ascent  

  Log-likelihood of data: 

  Compute derivative & optimize 
  usually with conjugate gradient ascent 
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Learning log-linear CRFs with gradient 
ascent 

  Gradient: 

  Requires one inference computation per 

  Usually, must regularize 
  E.g., L2 regularization on parameters 
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What you need to know about CRFs 

  Discriminative learning of graphical models 
 Fewer assumptions about distribution  often 

performs better than “similar” MN 

 Gradient computation requires inference per datapoint 
 Can be really slow!! 
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EM for BNs 

Graphical Models – 10708 
Carlos Guestrin 
Carnegie Mellon University 

November 17th, 2008 

Readings:  18.1, 18.2 
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Thus far, fully supervised learning 

  We have assumed fully supervised learning: 

  Many real problems have missing data: 
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The general learning problem with 
missing data 

  Marginal likelihood – x is observed, z is missing: 
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E-step 

  x is observed, z is missing 
  Compute probability of missing data given current choice of θ


  Q(z|x(j)) for each x(j)  
  e.g., probability computed during classification step 
  corresponds to “classification step” in K-means 
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Jensen’s inequality  

  Theorem: log ∑z P(z) f(z)  ≥ ∑z P(z) log f(z)  
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Applying Jensen’s inequality 

  Use:  log ∑z P(z) f(z)  ≥ ∑z P(z) log f(z)  
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The M-step maximizes lower bound on 
weighted data 

  Lower bound from Jensen’s: 

  Corresponds to weighted dataset: 
  <x(1),z=1> with weight Q(t+1)(z=1|x(1)) 
  <x(1),z=2> with weight Q(t+1)(z=2|x(1)) 
  <x(1),z=3> with weight Q(t+1)(z=3|x(1)) 
  <x(2),z=1> with weight Q(t+1)(z=1|x(2)) 
  <x(2),z=2> with weight Q(t+1)(z=2|x(2)) 
  <x(2),z=3> with weight Q(t+1)(z=3|x(2)) 
  … 
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The M-step 

  Maximization step: 

  Use expected counts instead of counts: 
  If learning requires Count(x,z) 
 Use EQ(t+1)[Count(x,z)] 
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Convergence of EM 

  Define potential function F(θ,Q): 

  EM corresponds to coordinate ascent on F 
 Thus, maximizes lower bound on marginal log likelihood 
 As seen in Machine Learning class last semester 


