

Log Likelihood for MN
$$\log_{2\sigma} = \log \sum_{x} \prod_{j=1}^{n} (x_{j}, x_{j}, y_{j})$$

Log likelihood of the data:

 $(D; O) = P(D | O) = \sum_{x} \log P(x_{j} | O)$
 $= \sum_{x} \log \sum_{y} \prod_{j=1}^{n} (x_{j}, x_{j}) \log P(x_{j} | O)$
 $= \sum_{x} \log \sum_{j=1}^{n} (x_{j}, x_{j}) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j} | O) \log P(x_{j} | O)$
 $= \sum_{x} \log P(x_{j$

Derivative of Log Likelihood for MNs

$$\ell(\mathcal{D}:\theta) = \log P(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \sum_{\mathbf{c}_{i}} \hat{P}(\mathbf{c}_{i}) \log \psi_{i}(\mathbf{c}_{i}) - m \log Z$$

 $\begin{array}{c} \bullet \quad \text{Derivative:} \\ \frac{\partial \ell}{\partial \psi_i(\mathbf{c}_i)} = \frac{m \hat{P}(\mathbf{c}_i)}{\psi_i(\mathbf{c}_i)} - \frac{m P_{\mathcal{F}}^{\psi}(\mathbf{c}_i)}{\psi_i(\mathbf{c}_i)} \end{array}$

- Can optimize using gradient ascent
 - □ Common approach
 - □ Conjugate gradient, Newton's method,...
- Let's also look at a simpler solution

10-708 - @Carlos Guestrin 2006-2008

Iterative Proportional Fitting (IPF)

- Setting derivative to zero:
- Fixed point equation:
- Iterate and converge to optimal parameters

 $\hfill \square$ Each iteration, must compute:

10-708 – @Carlos Guestrin 2006-2008

Log-linear Markov network (most common representation)

- Feature is some function φ[D] for some subset of variables D
 - □ e.g., indicator function
- Log-linear model over a Markov network *H*:
 - \square a set of features $\phi_1[\mathbf{D}_1], \ldots, \phi_k[\mathbf{D}_k]$
 - each **D**_i is a subset of a clique in H
 - two φ's can be over the same variables
 - □ a set of weights w₁,...,w_k
 - usually learned from data

$$\square P(X_1,...,X_n) = \frac{1}{Z} \exp \left[\sum_{i=1}^k w_i \phi_i(\mathbf{D}_i) \right]$$

Learning params for log linear models -

Gradient Ascent
$$P(X_1,...,X_n) = \frac{1}{Z} \exp \left[\sum_{i=1}^k w_i \phi_i(\mathbf{D}_i) \right]$$

Log-likelihood of data:

- Compute derivative & optimize
 - usually with conjugate gradient ascent

Derivative of log-likelihood 1 –

log-linear models
$$P(X_1, ..., X_n) = \frac{1}{Z} \exp \left[\sum_{i=1}^k w_i \phi_i(\mathbf{D}_i) \right]$$

$$\ell(\mathcal{D} : \mathbf{w}) = \log P(\mathcal{D} \mid \mathbf{w}, \mathcal{G}) = \sum_{j=1}^m \log \frac{1}{Z} \exp \left[\sum_{i=1}^k w_i \phi_i(\mathbf{d}_i^{(j)}) \right]$$

Derivative of log-likelihood 2 -

$$P(X_1, \dots, X_n) = \frac{1}{Z} \exp \left[\sum_{i=1}^k w_i \phi_i(\mathbf{D}_i) \right]$$

log-linear models
$$P(X_1,...,X_n) = \frac{1}{Z} \exp\left[\sum_{i=1}^k w_i \phi_i(\mathbf{D}_i)\right]$$

$$\frac{\partial \ell(\mathcal{D}: \mathbf{w})}{\partial w_i} = m \sum_{\mathbf{d}_i} \hat{P}(\mathbf{d}_i) \phi_i(\mathbf{d}_i) - m \frac{\partial \log Z}{\partial w_i}$$

Learning log-linear models with gradient ascent

- - Gradient:

$$\frac{\partial \ell(\mathcal{D} : \mathbf{w})}{\partial w_i} = m \sum_{\mathbf{d}_i} \hat{P}(\mathbf{d}_i) \phi_i(\mathbf{d}_i) - m \sum_{\mathbf{d}_i} P(\mathbf{d}_i \mid \mathbf{w}) \phi_i(\mathbf{d}_i)$$

- Requires one inference computation per
- Theorem: w is maximum likelihood solution iff
- Usually, must regularize
 - ☐ E.g., L₂ regularization on parameters

10-708 - @Carlos Guestrin 2006-2008

13

What you need to know about learning MN parameters?

- BN parameter learning easy
- MN parameter learning doesn't decompose!
- Learning requires inference!
- Apply gradient ascent or IPF iterations to obtain optimal parameters

10-708 – ©Carlos Guestrin 2006-2008

Generative v. Discriminative classifiers - A review Want to Learn: h:X → Y □ X – features □ Y – target classes ■ Bayes optimal classifier – P(Y|X) Generative classifier, e.g., Naïve Bayes: ☐ Assume some functional form for P(X|Y), P(Y) \Box Estimate parameters of P(X|Y), P(Y) directly from training data □ Use Bayes rule to calculate P(Y|X = x)☐ This is a 'generative' model ■ Indirect computation of P(Y|X) through Bayes rule ■ But, can generate a sample of the data, $P(X) = \sum_{y} P(y) P(X|y)$ ■ Discriminative classifiers, e.g., Logistic Regression: ☐ Assume some functional form for P(Y|X) \Box Estimate parameters of P(Y|X) directly from training data ☐ This is the 'discriminative' model Directly learn P(Y|X) ■ But cannot obtain a sample of the data, because P(X) is not available

Log-linear CRFs (most common representation)

- **Graph** *H*: only over hidden vars Y₁,..,Y_n
 - \square No assumptions about dependency on observed vars X
 - ☐ You must always observe all of X
- Feature is some function $\phi[D]$ for some subset of variables D
 - □ e.g., indicator function,
- **Log-linear model** over a CRF *H*:
 - \square a set of features $\phi_1[\mathbf{D}_1], ..., \phi_k[\mathbf{D}_k]$
 - each **D**_i is a subset of a clique in H
 - two φ's can be over the same variables
 - □ a set of weights w₁,...,w_k
 - usually learned from data

$$P(Y_1, \dots, Y_n \mid x) = \frac{1}{Z(x)} \exp \left[\sum_{i=1}^k w_i \phi_i(\mathbf{D}_i, x) \right]$$

10-708 - @Carlos Guestrin 2006-2008

17

Learning params for log linear CRFs – Gradient Ascent

$$P(Y_1, \dots, Y_n \mid x) = \frac{1}{Z(x)} \exp \left[\sum_{i=1}^k w_i \phi_i(\mathbf{D}_i, x) \right]$$

Log-likelihood of data:

- Compute derivative & optimize
 - usually with conjugate gradient ascent

10-708 – @Carlos Guestrin 2006-2008

Learning log-linear CRFs with gradient ascent

- Ŋ
- Requires one inference computation per
- Usually, must regularize
 - ☐ E.g., L₂ regularization on parameters

10-708 - @Carlos Guestrin 2006-2008

19

What you need to know about CRFs

- Discriminative learning of graphical models
 - □ Fewer assumptions about distribution → often performs better than "similar" MN
 - ☐ Gradient computation requires inference per datapoint
 - → Can be really slow!!

10-708 - ©Carlos Guestrin 2006-2008

Thus far, fully supervised learning • We have assumed fully supervised learning: • Many real problems have missing data:

The general learning problem with missing data

$$\ell(\mathcal{D}:\theta) = \log \prod_{j=1}^{m} P(x^{(j)} \mid \theta)$$

$$= \sum_{j=1}^{m} \log P(x^{(j)} \mid \theta)$$

$$= \sum_{j=1}^{m} \log \sum_{z} P(z, x^{(j)} \mid \theta)$$

10-708 - ©Carlos Guestrin 2006-200

23

E-step

- x is observed, z is missing
- Compute probability of missing data given current choice of θ
 Q(z|x^(j)) for each x^(j)
 - e.g., probability computed during classification step
 - corresponds to "classification step" in K-means

$$Q^{(t+1)}(z \mid x^{(j)}) = P(z \mid x^{(j)}, \theta^{(t)})$$

10-708 – @Carlos Guestrin 2006-2008

Jensen's inequality

$$\ell(\mathcal{D}:\theta) = \sum_{j=1}^{m} \log \sum_{z} P(z, x^{(j)} \mid \theta)$$

■ Theorem: $\log \sum_{z}^{j=1} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$

10-708 - @Carlos Guestrin 2006-2008

25

Applying Jensen's inequality

■ Use: $\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \ge \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$

$$\ell(\mathcal{D}:\theta^{(t)}) = \sum_{j=1}^{m} \log \sum_{z} Q^{(t+1)}(z \mid x^{(j)}) \frac{P(z, x^{(j)} \mid \theta^{(t)})}{Q^{(t+1)}(z \mid x^{(j)})}$$

0-708 – ©Carlos Guestrin 2006-2008

The M-step maximizes lower bound on weighted data

$$\ell(\mathcal{D}: \theta^{(t)}) \ge \sum_{j=1}^{m} \sum_{z} Q^{(t+1)}(z \mid x^{(j)}) \log P(z, x^{(j)} \mid \theta^{(t)}) + H(Q^{(t+1)})$$

- Corresponds to weighted dataset:

 - $\neg < x^{(1)}, z=2 > \text{ with weight } Q^{(t+1)}(z=2|x^{(1)})$

 - \Box <**x**⁽²⁾,**z**=1> with weight Q^(t+1)(**z**=1|**x**⁽²⁾)
 - $= \langle x^{(2)}, z=2 \rangle$ with weight $Q^{(t+1)}(z=2|x^{(2)})$

 - □ ...

10-708 - @Carlos Guestrin 2006-2008

27

The M-step

$$\ell(\mathcal{D}:\theta^{(t)}) \geq \sum_{j=1}^{m} \sum_{z} Q^{(t+1)}(z \mid x^{(j)}) \log P(z, x^{(j)} \mid \theta^{(t)}) + H(Q^{(t+1)})$$

Maximization step:

$$\theta^{(t+1)} \leftarrow \arg \max_{\theta} \sum_{j=1}^{m} \sum_{z} Q^{(t+1)}(z \mid x^{(j)}) \log P(z, x^{(j)} \mid \theta)$$

- Use expected counts instead of counts:
 - ☐ If learning requires Count(x,z)
 - \square Use $E_{Q(t+1)}[Count(\mathbf{x},\mathbf{z})]$

10-708 – @Carlos Guestrin 2006-2008

Convergence of EM

• Define potential function $F(\theta,Q)$:

$$\ell(\mathcal{D}: \theta^{(t)}) \ge F(\theta, Q) = \sum_{j=1}^{m} \sum_{z} Q(z \mid x^{(j)}) \log \frac{P(z, x^{(j)} \mid \theta)}{Q(z \mid x^{(j)})}$$

- EM corresponds to coordinate ascent on F
 - ☐ Thus, maximizes lower bound on marginal log likelihood
 - □ As seen in Machine Learning class last semester

10-708 - @Carlos Guestrin 2006-2008