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Learning Parameters of a BN
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Log Likelihood doesn’t decompose

i} fgr M Nﬁ pw) = =1

m Log likelihood:

{D:0)=1ogP(D|0,G) =m> > P(c;)logp;(c;)—mlog Z

m A concave problem
Can find global optimum!!

m Term log Z doesn’t decompose!!




Derivative of Log Likelihood for MNs
p(u):Count(U=u)
" S g

(D :0) =1logP(D|0,G) =m>_ > P(c;)log;(c;)—mlog Z

Derivative of Log Likelihood for MNs 2
P(u) = Count(U = u)
" SEE——— i

L(D:0)=1log P(D|6,G) =m Z 3" P(c;) log 9;(c;)—mlog Z




Derivative of Log Likelihood for MNs

P(u) = Count(U = u)
" 3
(D :0) =1logP(D|0,G) =m>_ > P(c;)log;(c;)—mlog Z

m Derivative: R
o  mP(c;) mPf(ci)

Oi(ci)  vilcs) Yi(ci)

m Computing derivative requires inference:

m Can optimize using gradient ascent
Common approach

Conjugate gradient, Newton’s method,...
m Let’s also look at a simpler solution
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lterative Proportional Fitting (IPF)

Count(U = u)

" BN P =
o0  mP(c;) mP¥(c;)
obi(ci)  ilcs) ¥i(c;)

m Setting derivative to zero:

m Fixed point equation:

m |terate and converge to optimal parameters
Each iteration, must compute:
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Log-linear Markov network

. Smost common representation)

m Feature is some function ¢[D] for some subset of variables D
e.g., indicator function
m Log-linear model over a Markov network H:
a set of features ¢[D],..., O [Dy]
= each D, is a subset of a clique in H
= two ¢’s can be over the same variables
a set of weights wy,...,w,
= usually learned from data

k
P(X1,..., Xn) = %exp {Z w;p; (Di)}

i=1
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Learning params for log linear models —

Gradient Ascent
k
P(X1,...,Xp) = %exp {Z w;p; (Di):|

i=1

m Log-likelihood of data:

m Compute derivative & optimize
usually with conjugate gradient ascent
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Derivative of log-likelihood 1 —

_ log-linear models
k
P(Xy,..., Xn) = %exp lz w;p; (Dl)}

i=1

LD :w)=1ogP(D|w,G) Zlog—exp

Z wz¢z d(J) ]
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Derivative of log-likelihood 2 —
_ log-linear models

P(X1,..., Xp) = %GXD [; w;id; (Di):|

m =mY_ P(d))i(di) —m

ow; T

Olog Z
3wi
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Learning log-linear models with

_ ﬁradient ascent

= Gradient: 5@(511;'“’) =m  P(di)pi(ds) —m > P(di | w)ei(ds)
% d; d;

m Requires one inference computation per
m Theorem: w is maximum likelihood solution iff

m Usually, must regularize
E.g., L, regularization on parameters
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What you need to know about

. geaming MIN parameters”

m BN parameter learning easy
m MN parameter learning doesn’t decompose!

m Learning requires inference!

m Apply gradient ascent or IPF iterations to obtain
optimal parameters
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Readings:
K&F: 19.3.2

Conditional Random Fields
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Generative v. Discriminative
| ifiers — A review

m Wantto Learn: h:X— Y
X — features
Y — target classes
m Bayes optimal classifier — P(Y|X)
m Generative classifier, e.g., Naive Bayes:
Assume some functional form for P(X|Y), P(Y)
Estimate parameters of P(X|Y), P(Y) directly from training data
Use Bayes rule to calculate P(Y|X= x)
This is a ‘generative’ model
= Indirect computation of P(Y|X) through Bayes rule
= But, can generate a sample of the data, P(X) = 3, P(y) P(Xly)
m Discriminative classifiers, e.g., Logistic Regression:
Assume some functional form for P(Y|X)
Estimate parameters of P(Y|X) directly from training data
This is the ‘discriminative’ model
= Directly learn P(Y|X)
= But cannot obtain a sample of the data, because P(X) is not available
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Log-linear CRFs

. Smost common representation)

m Graph H: only over hidden vars Y,,..,Y,,
No assumptions about dependency on observed vars X
You must always observe all of X

m Feature is some function ¢[D] for some subset of variables D
e.g., indicator function,

m Log-linear model over a CRF H:

a set of features ¢[D,],..., ¢ [D]
= each D, is a subset of a clique in H
= two ¢’'s can be over the same variables

a set of weights wy,...,w,
= usually learned from data

k
P(Yy,...,.Y, |z) = Z(l.'r) exp [Z wiqbz-(Di,m)]
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Learning params for log linear CRFs —
Gradient Ascent

k
1
PYy,....,.Y, |z)= ——exp w;0;(D;, x
m Log-likelihood of data:

m Compute derivative & optimize
usually with conjugate gradient ascent
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Learning log-linear CRFs with gradient
ascent

m Gradient: W = i ¢:(dP 20 — 3 P(d; | 2D, w)ei(d;, 29)
H j=1 d;

m Requires one inference computation per

m Usually, must regularize
E.g., L, regularization on parameters
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What you need to know about CRFs

" JEE
m Discriminative learning of graphical models

Fewer assumptions about distribution =» often
performs better than “similar” MN

Gradient computation requires inference per datapoint
= Can be really slow!!
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| Readings: 18.1, 18.2
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Thus far, fully supervised learning
" SEE—

m We have assumed fully supervised learning:

m Many real problems have missing data:

22
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The general learning problem with

_ missinﬁ data

m Marginal likelihood — x is observed, z is missing:

UD:0) = logﬁP(m(j) | 6)

=1

= ZlogP(:c(j) | 6)
j=1

— ilogZP(z,xU) | 6)
j=1 z

23

E-step
* JEE

m X is observed, z is missing

m Compute probability of missing data given current choice of 6

Q(z|x®) for each x0)
= e.g., probability computed during classification step
= corresponds to “classification step” in K-means

QU V(2| z)) = P(z | 29,6
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Jensen’s inequality
- _

(D : ) ZlogZsz(J)w

m Theorem: log EZ P(z )f(z) =Y. P(z)log f(z)

Applying Jensen’s inequality
" JEE—
m Use: log Y, P(z) f(z) =), P(z) log f(z)

G) | ®
(t) t+1 P(z,zV | )
: 0 ZlogZQ( ) | (J))Q(t+1)( | .’L‘(j))
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The M-step maximizes lower bound on
weight t
m Lower bound from Jensen’s:
YD : g(t)) > iZQ(t“)(z , x(]’)) logP(z,x(j) | g(t)) + H(Q(t“))

j=1 =z

m Corresponds to weighted dataset:
<x(,z=1> with weight Q*")(z=1|x(")
<x(1,z=2> with weight Qt*")(z=2|x("))
<x(",z=3> with weight Q*")(z=3|x("))
<x@,z=1> with weight Qt*")(z=1|x(2))
<x(®,z=2> with weight Q*")(z=2|x(2))
<x(®),z=3> with weight Q*)(z=3|x(®)
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The M-step
"
UD: M) > iZQ(H—l)(z | ) log P(z, 2@ | 6®) + H(QWHY)

j=1 =z

m Maximization step:

(t+1) (t+1) (7) (7)
0 HargmngZQ (z | zY)log P(z,2V’ | 0)

j=1 =z

m Use expected counts instead of counts:
If learning requires Count(x,z)
Use Eq.qy[Count(x,z)]
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Convergence of EM
" JEE
m Define potential functlon F(0,Q):

UD:6M) > F(6,Q) ZZQ (z | 9)log

j=1 =z

P(z,29) | 0)
QG 120)

m EM corresponds to coordinate ascent on F
Thus, maximizes lower bound on marginal log likelihood
As seen in Machine Learning class last semester
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