























Revisiting Mean-Fields

In 
$$Z = F[P_{\mathcal{F}}, Q] + D(Q||P_{\mathcal{F}})$$
  $F[P_{\mathcal{F}}, Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$ 

• Choice of Q:  $Q(\mathcal{X}) = \prod_{\phi \in \mathcal{F}} Q_i(\chi_i)$ 

• Optimization problem:

$$Q = \sum_{\phi \in \mathcal{F}} (\ln \phi) + \sum_{\phi \in \mathcal{F}} H_{Q_i}(\chi_i)$$

$$Q = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + \sum_{\phi \in \mathcal{F}} H_{Q_j}(\chi_j), \quad \forall i, \sum_{x_i} Q_i(x_i) = 1$$

### **Announcements**

- - Recitation tomorrow
  - HW5 out soon

- Jyon Should
- Will not cover relational models this semester
  - ☐ Instead, recommend Pedro Domingos' tutorial on Markov Logic
    - Markov logic is one example of a relational probabilistic model
    - November 14<sup>th</sup> from 1:00 pm to 3:30 pm in Wean 4623

10-708 - Carlos Guestrin 2006-2008

### Interpretation of energy functional



Energy functional:

$$F[P_{\mathcal{F}}, Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$$

$$\blacksquare \text{ Exact if } \textbf{P} = \textbf{Q}. \qquad \text{In } Z = \textbf{P}[P_{\mathcal{F}}, Q] + \textbf{D}(Q||P_{\mathcal{F}})$$

View problem as an approximation of entropy term:

## Entropy of a tree distribution









Decomposing entropy term:

$$H(X) = H(CD) + H(DC) + H(CI) + H(CS)_{+}H(CC) - H(D) - 2H(C) - H(D)$$

for any tree MN

■ More generally: 
$$H_P(\mathbf{X}) = \sum_{(i,j) \in E} H(X_i, X_j) - \sum_i (d_i - 1) H(X_i)$$

 $\Box$  d<sub>i</sub> number neighbors of X<sub>i</sub>





### What you need to know about GBP

- Spectrum between Loopy BP & Junction Trees:
   More computation, but typically better answers
- If satisfies RIP, equations are very simple
- General setting, slightly trickier equations, but not hard
- Relates to variational methods: Corresponds to local optima of approximate version of energy functional

10-708 - ©Carlos Guestrin 2006

19

# Parameter learning in Markov nets Graphical Models – 10708 Carlos Guestrin Carnegie Mellon University November 12<sup>th</sup>, 2008 10-708 – Carlos Guestrin 2006-2008





Log Likelihood doesn't decompose for MNs

P(u) = 
$$\frac{\text{Count}(\mathbf{U} = \mathbf{u})}{m}$$

Log likelihood:
$$\ell(\mathcal{D}:\theta) = \log P(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \sum_{c_{i}} \hat{P}(c_{i}) \log \psi_{i}(c_{i}) - m \log Z$$

A convex problem
Can find global optimum!!

Term log Z doesn't decompose!!



Derivative of Log Likelihood for MNs 2 
$$\hat{P}(\mathbf{u}) = \frac{\text{Count}(\mathbf{U} = \mathbf{u})}{m}$$

$$\ell(\mathcal{D}:\theta) = \log P(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \sum_{\mathbf{c}_{i}} \hat{P}(\mathbf{c}_{i}) \log \psi_{i}(\mathbf{c}_{i}) - m \log Z$$



# Iterative Proportional Fitting (IPF)



 $\hat{P}(\mathbf{u}) = \frac{\mathsf{Count}(\mathbf{U} = \mathbf{u})}{m}$ 

- Setting derivative to zero:
- Fixed point equation:



- Iterate and converge to optimal parameters
  - □ Each iteration, must compute:

10-708 - @Carlos Guestrin 2006

27

# What you need to know about learning MN parameters?



- MN parameter learning doesn't decompose!
- Learning requires inference!
- Apply gradient ascent or IPF iterations to obtain optimal parameters

28