

Revisiting Mean-Fields

In
$$Z = F[P_{\mathcal{F}}, Q] + D(Q||P_{\mathcal{F}})$$
 $F[P_{\mathcal{F}}, Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$

• Choice of Q: $Q(\mathcal{X}) = \prod_{\phi \in \mathcal{F}} Q_i(\chi_i)$

• Optimization problem:

$$Q = \sum_{\phi \in \mathcal{F}} (\ln \phi) + \sum_{\phi \in \mathcal{F}} H_{Q_i}(\chi_i)$$

$$Q = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + \sum_{\phi \in \mathcal{F}} H_{Q_j}(\chi_j), \quad \forall i, \sum_{x_i} Q_i(x_i) = 1$$

Announcements

- - Recitation tomorrow
 - HW5 out soon

- Jyon Should
- Will not cover relational models this semester
 - ☐ Instead, recommend Pedro Domingos' tutorial on Markov Logic
 - Markov logic is one example of a relational probabilistic model
 - November 14th from 1:00 pm to 3:30 pm in Wean 4623

10-708 - Carlos Guestrin 2006-2008

Interpretation of energy functional

Energy functional:

$$F[P_{\mathcal{F}}, Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$$

$$\blacksquare \text{ Exact if } \textbf{P} = \textbf{Q}. \qquad \text{In } Z = \textbf{P}[P_{\mathcal{F}}, Q] + \textbf{D}(Q||P_{\mathcal{F}})$$

View problem as an approximation of entropy term:

Entropy of a tree distribution

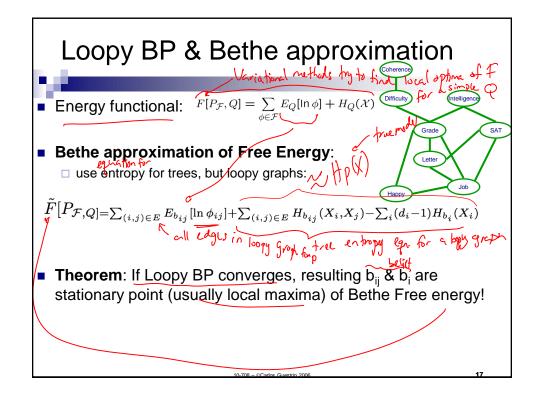
Decomposing entropy term:

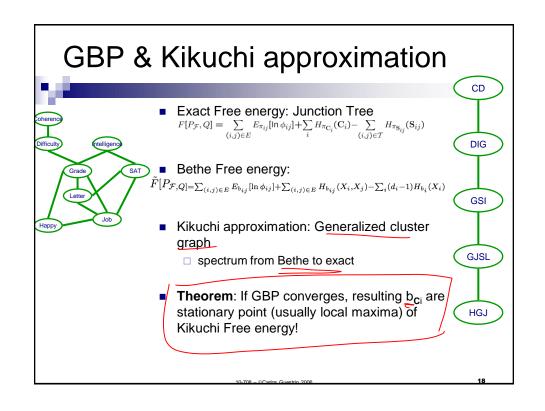
$$H(X) = H(CD) + H(DC) + H(CI) + H(CS)_{+}H(CC) - H(D) - 2H(C) - H(D)$$

for any tree MN

■ More generally:
$$H_P(\mathbf{X}) = \sum_{(i,j) \in E} H(X_i, X_j) - \sum_i (d_i - 1) H(X_i)$$

 \Box d_i number neighbors of X_i





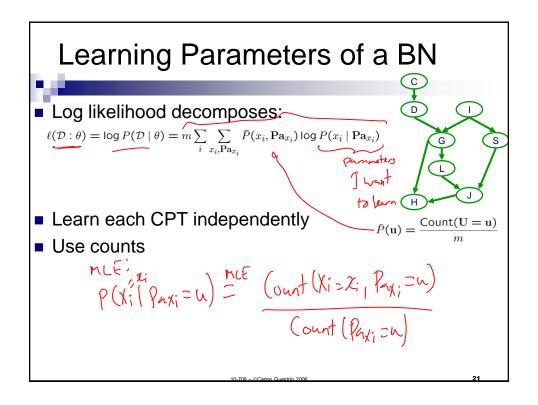
What you need to know about GBP

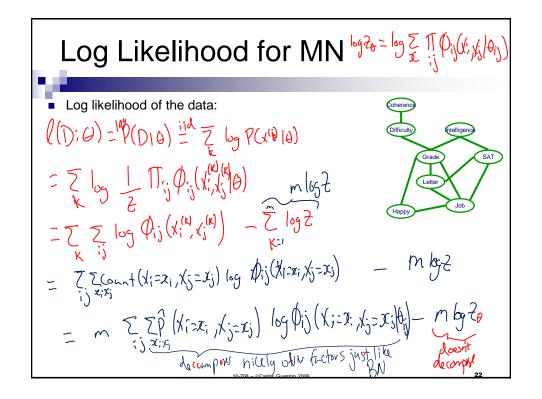
- Spectrum between Loopy BP & Junction Trees:
 More computation, but typically better answers
- If satisfies RIP, equations are very simple
- General setting, slightly trickier equations, but not hard
- Relates to variational methods: Corresponds to local optima of approximate version of energy functional

10-708 - ©Carlos Guestrin 2006

19

Parameter learning in Markov nets Graphical Models – 10708 Carlos Guestrin Carnegie Mellon University November 12th, 2008 10-708 – Carlos Guestrin 2006-2008





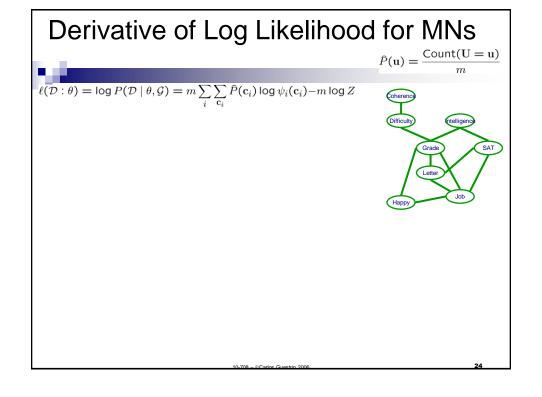
Log Likelihood doesn't decompose for MNs

P(u) =
$$\frac{\text{Count}(\mathbf{U} = \mathbf{u})}{m}$$

Log likelihood:
$$\ell(\mathcal{D}:\theta) = \log P(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \sum_{c_{i}} \hat{P}(c_{i}) \log \psi_{i}(c_{i}) - m \log Z$$

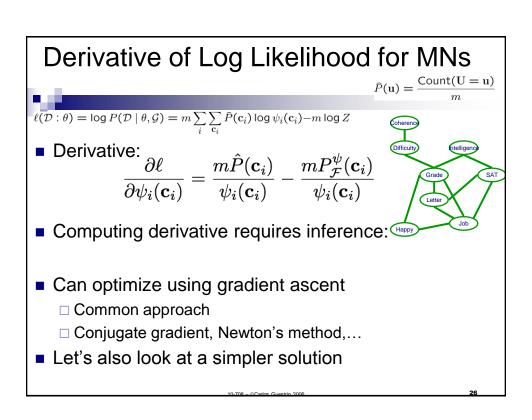
A convex problem
Can find global optimum!!

Term log Z doesn't decompose!!

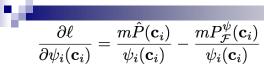


Derivative of Log Likelihood for MNs 2
$$\hat{P}(\mathbf{u}) = \frac{\text{Count}(\mathbf{U} = \mathbf{u})}{m}$$

$$\ell(\mathcal{D}:\theta) = \log P(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \sum_{\mathbf{c}_{i}} \hat{P}(\mathbf{c}_{i}) \log \psi_{i}(\mathbf{c}_{i}) - m \log Z$$



Iterative Proportional Fitting (IPF)



 $\hat{P}(\mathbf{u}) = \frac{\mathsf{Count}(\mathbf{U} = \mathbf{u})}{m}$

- Setting derivative to zero:
- Fixed point equation:

- Iterate and converge to optimal parameters
 - □ Each iteration, must compute:

10-708 - @Carlos Guestrin 2006

27

What you need to know about learning MN parameters?

- MN parameter learning doesn't decompose!
- Learning requires inference!
- Apply gradient ascent or IPF iterations to obtain optimal parameters

28