



Conditioning a Gaussian

Joint Gaussian:
$$p(X,Y) \sim N(\mu;\Sigma)$$
Conditional linear Gaussian:
$$p(Y|X) \sim N(\mu_{Y|X}; \sigma^2_{Y|X}) \sim \text{Gaussian}$$

$$\mu_{Y|X} = \mu_Y + \frac{\sigma_{YX}}{\sigma_X^2} (x - \mu_X)$$

$$\sigma_{Y|X}^2 = \sigma_Y^2 - \frac{\sigma_{YX}^2}{\sigma_X^2}$$

$$\sigma_{Y|X}^2 = \sigma_Y^2 - \frac{\sigma_{YX}^2}{\sigma_X^2}$$

$$\sigma_{Y|X}^2 = \sigma_{Y}^2 - \frac{\sigma_{YX}^2}{\sigma_{X}^2}$$

$$\sigma_{Y|X}^2 = \sigma_{Y}^2 - \frac{\sigma_{YX}^2}{\sigma_{X}^2}$$

$$\sigma_{Y|X}^2 = \sigma_{Y}^2 - \frac{\sigma_{YX}^2}{\sigma_{X}^2}$$

$$\sigma_{Y|X}^2 = \sigma_{Y|X}^2 - \frac{\sigma_{Y|X}^2}{\sigma_{X}^2}$$

$$\sigma_{Y|X}^2 = \sigma_{$$

## Gaussian is a "Linear Model"

- $\mu_{Y|X} = \mu_Y + \frac{\sigma_{YX}}{\sigma_X^2} (x \mu_X)$   $\sigma_{Y|X}^2 = \sigma_Y^2 \frac{\sigma_{YX}^2}{\sigma_X^2}$ Conditional linear Gaussian:
  - $\square$  p(Y|X) ~  $N(\beta_0 + \beta X; \sigma^2)$

## Conditioning a Gaussian



- Joint Gaussian:
  - $\square$  p(X,Y) ~  $N(\mu;\Sigma)$
- Conditional linear Gaussian:

$$\Box$$
 p(Y|X) ~  $N(\mu_{Y|X}; \Sigma_{YY|X})$ 

$$\mu_{Y|X} = \mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1} (x - \mu_x)$$

$$\Sigma_{YY|X} = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$$

Conditional Linear Gaussian (CLG) – general case



Conditional linear Gaussian:

$$\square$$
 p(Y|X) ~  $N(\beta_0+BX; \Sigma_{YY|X})$ 

$$\mu_{Y|X} = \mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1} (x - \mu_x)$$

$$\Sigma_{YY|X} = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$$

# Understanding a linear Gaussian — the 2d case Variance increases over time (motion noise adds up) Object doesn't necessarily move in a straight line

## Tracking with a Gaussian 1



- $P(X_0) \sim N(\mu_0, \Sigma_0)$
- $p(X_{i+1}|X_i) \sim N(B|X_i + \beta; \Sigma_{X_{i+1}|X_i})$

# Tracking with Gaussians 2 – Making observations



- Detector observes O<sub>i</sub>=o<sub>i</sub>
- Want to compute  $p(X_i|O_i=o_i)$
- Use Bayes rule:
- Require a CLG observation model
  - $\square$  p(O<sub>i</sub>|X<sub>i</sub>) ~ N(W X<sub>i</sub> + v;  $\Sigma_{Oi|Xi}$ )

Operations in Kalman filter





- Compute  $p(X_t \mid O_{1:t} = o_{1:t})$
- Start with  $p(X_0)$
- At each time step t:
  - □ **Condition** on observation  $p(X_t \mid o_{1:t}) \propto p(X_t \mid o_{1:t-1})p(o_t \mid X_t)$
  - □ **Prediction** (Multiply transition model)  $p(X_{t+1}, X_t \mid o_{1:t}) = p(X_{t+1} \mid X_t)p(X_t \mid o_{1:t})$
  - □ **Roll-up** (marginalize previous time step)

$$p(X_{t+1} \mid o_{1:t}) = \int_{X_t} p(X_{t+1}, x_t \mid o_{1:t}) dx_t$$

- I'll describe one implementation of KF, there are others
  - Information filter

# **Exponential family representation**

of Gaussian: Canonical Form
$$p(X_1,...,X_n) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)\right\}$$

#### Canonical form

$$p(X_1, \dots, X_n) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right\}$$
$$= K \exp\left\{\eta^T \mathbf{x} - \frac{1}{2} \mathbf{x}^T \Lambda \mathbf{x}\right\}$$

Standard form and canonical forms are related:

$$\mu = \Lambda^{-1} \eta$$
$$\Sigma = \Lambda^{-1}$$

- Conditioning is easy in canonical form
- Marginalization easy in standard form

#### Conditioning in canonical form

- $p(X_t \mid o_{1:t}) \propto p(X_t \mid o_{1:t-1}) p(o_t \mid X_t)$
- First multiply:  $p(A, B) = p(A)p(B \mid A)$   $p(A) : \eta_1, \Lambda_1$   $p(B \mid A) : \eta_2, \Lambda_2$   $p(A, B) : \eta_3 = \eta_1 + \eta_2, \Lambda_3 = \Lambda_1 + \Lambda_2$ 
  - Then, condition on value B = y  $p(A \mid B = y)$   $\eta_{A|B=y} = \eta_A \Lambda_{AB}.y$

 $\Lambda_{AA|B=y} = \Lambda_{AA}$ 

13

Operations in Kalman filter





- Compute  $p(X_t \mid O_{1:t} = o_{1:t})$
- Start with  $p(X_0)$
- At each time step t:
  - $\ \square$  Condition on observation  $p(X_t \mid o_{1:t}) \propto p(X_t \mid o_{1:t-1}) p(o_t \mid X_t)$
  - □ **Prediction** (Multiply transition model)

 $p(X_{t+1}, X_t \mid o_{1:t}) = p(X_{t+1} \mid X_t)p(X_t \mid o_{1:t})$ 

□ Roll-up (marginalize previous time step)

 $p(X_{t+1} \mid o_{1:t}) = \int_{X_t} p(X_{t+1}, x_t \mid o_{1:t}) dx_t$ 

#### Prediction & roll-up in canonical form

- - First multiply:  $p(A, B) = p(A)p(B \mid A)$
  - Then, marginalize  $X_t$ :  $p(A) = \int_B p(A, b)db$

$$\eta_A^m = \eta_A - \Lambda_{AB} \Lambda_{BB}^{-1} \eta_B$$
  
$$\Lambda_{AA}^m = \Lambda_{AA} - \Lambda_{AB} \Lambda_{BB}^{-1} \Lambda_{BA}$$

15

#### What if observations are not CLG?



- Often observations are not CLG
  - $\Box$  CLG if O<sub>i</sub> = B X<sub>i</sub> +  $\beta$ <sub>o</sub> +  $\epsilon$
- Consider a motion detector
  - $\Box$  O<sub>i</sub> = 1 if person is likely to be in the region
  - □ Posterior is not Gaussian

## Linearization: incorporating nonlinear evidence

- Ч
- p(O<sub>i</sub>|X<sub>i</sub>) not CLG, but...
- Find a Gaussian approximation of  $p(X_i, O_i) = p(X_i) p(O_i | X_i)$
- Instantiate evidence O<sub>i</sub>=o<sub>i</sub> and obtain a Gaussian for p(X<sub>i</sub>|O<sub>i</sub>=o<sub>i</sub>)
- Why do we hope this would be any good?
  - □ Locally, Gaussian may be OK

17

#### Linearization as integration



- Gaussian approximation of p(X<sub>i</sub>,O<sub>i</sub>)= p(X<sub>i</sub>) p(O<sub>i</sub>|X<sub>i</sub>)
- Need to compute moments
  - □ E[O<sub>i</sub>]
  - $\Box$  E[O<sub>i</sub><sup>2</sup>]
  - $\Box$  E[O<sub>i</sub> X<sub>i</sub>]
- Note: Integral is product of a Gaussian with an arbitrary function

# Linearization as numerical integration



- Effective numerical integration with Gaussian quadrature method
  - □ Approximate integral as weighted sum over integration points
  - ☐ Gaussian quadrature defines location of points and weights
- Exact if arbitrary function is polynomial of bounded degree
- Number of integration points exponential in number of dimensions d
- Exact monomials requires exponentially fewer points
  - □ For 2d+1 points, this method is equivalent to effective Unscented Kalman filter
  - □ Generalizes to many more points

19

#### Operations in non-linear Kalman filter





- Compute  $p(X_t \mid O_{1:t} = o_{1:t})$
- Start with  $p(X_0)$
- At each time step t:
  - □ Condition on observation (use numerical integration)

$$p(X_t \mid o_{1:t}) \propto p(X_t \mid o_{1:t-1})p(o_t \mid X_t)$$

□ Prediction (Multiply transition model, use numerical integration)

$$p(X_{t+1}, X_t \mid o_{1:t}) = p(X_{t+1} \mid X_t)p(X_t \mid o_{1:t})$$

□ **Roll-up** (marginalize previous time step)

$$p(X_{t+1} \mid o_{1:t}) = \int_{X_t} p(X_{t+1}, x_t \mid o_{1:t}) dx_t$$

#### Canonical form & Markov Nets

$$p(X_1, \dots, X_n) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right\}$$
$$= K \exp\left\{\eta^T \mathbf{x} - \frac{1}{2} \mathbf{x}^T \Lambda \mathbf{x}\right\}$$

21

What you need to know about Gaussians, Kalman Filters, Gaussian MNs



#### Kalman filter

- □ Probably most used BN
- □ Assumes Gaussian distributions
- □ Equivalent to linear system
- ☐ Simple matrix operations for computations

#### Non-linear Kalman filter

- ☐ Usually, observation or motion model not CLG
- □ Use numerical integration to find Gaussian approximation

#### Gaussian Markov Nets

□ Sparsity in precision matrix equivalent to graph structure

#### Continuous and discrete (hybrid) model

□ Much harder, but doable and interesting (see book)