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Kalman Filters 
Gaussian MNs 

Graphical Models – 10708 
Carlos Guestrin 
Carnegie Mellon University 

December 1st, 2008 

Readings: 
 K&F: 6.1, 6.2, 6.3, 14.1, 14.2, 14.3, 14.4,   
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Multivariate Gaussian 

Mean vector: 

Covariance matrix: 



2 

3 

Conditioning a Gaussian 

  Joint Gaussian: 
  p(X,Y) ~ N(µ;Σ) 

  Conditional linear Gaussian: 
  p(Y|X) ~ N(µY|X; σ2

Y|X) 
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Gaussian is a “Linear Model” 

  Conditional linear Gaussian: 
 p(Y|X) ~ N(β0+βX; σ2) 
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Conditioning a Gaussian 

  Joint Gaussian: 
  p(X,Y) ~ N(µ;Σ) 

  Conditional linear Gaussian: 
  p(Y|X) ~ N(µY|X; ΣYY|X) 
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Conditional Linear Gaussian (CLG) –  
general case 

  Conditional linear Gaussian: 
 p(Y|X) ~ N(β0+ΒX; ΣYY|X) 
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Understanding a linear Gaussian – 
the 2d case  Variance increases over time 

(motion noise adds up) 
 Object doesn’t necessarily 
move in a straight line 
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Tracking with a Gaussian 1 

  p(X0) ~ N(µ0,Σ0) 
  p(Xi+1|Xi) ~ N(Β Xi + β; ΣXi+1|Xi) 
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Tracking with Gaussians 2 –  
Making observations 

  We have p(Xi) 
  Detector observes Oi=oi 
  Want to compute p(Xi|Oi=oi) 
  Use Bayes rule: 

  Require a CLG observation model 
  p(Oi|Xi) ~ N(W Xi + v; ΣOi|Xi) 
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Operations in Kalman filter 

  Compute 

  Start with   
  At each time step t: 

  Condition on observation 

  Prediction (Multiply transition model) 

  Roll-up (marginalize previous time step) 

  I’ll describe one implementation of KF, there are others 
  Information filter 

X1 

O1 =           

X5 X3 X4 X2 

O2 =           O3 =           O4 =           O5 =           
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Exponential family representation 
of Gaussian: Canonical Form 
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Canonical form 

  Standard form and canonical forms are related: 

  Conditioning is easy in canonical form 
  Marginalization easy in standard form 
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Conditioning in canonical form 

  First multiply: 

  Then, condition on value B = y 
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Operations in Kalman filter 

  Compute 

  Start with   
  At each time step t: 

  Condition on observation 

  Prediction (Multiply transition model) 

  Roll-up (marginalize previous time step) 

X1 

O1 =           

X5 X3 X4 X2 

O2 =           O3 =           O4 =           O5 =           
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Prediction & roll-up in canonical form 

  First multiply: 

  Then, marginalize Xt: 
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What if observations are not CLG? 

  Often observations are not CLG 
  CLG if Oi = Β Xi + βo + ε


  Consider a motion detector  
  Oi = 1 if person is likely to be in the region 

  Posterior is not Gaussian 
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Linearization: incorporating non-
linear evidence 
  p(Oi|Xi) not CLG, but… 
  Find a Gaussian approximation of p(Xi,Oi)= p(Xi) p(Oi|Xi) 
  Instantiate evidence Oi=oi and obtain a Gaussian for 

p(Xi|Oi=oi) 

  Why do we hope this would be any good? 
  Locally, Gaussian may be OK 
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Linearization as integration 

  Gaussian approximation of p(Xi,Oi)= p(Xi) p(Oi|Xi) 

  Need to compute moments 

  E[Oi] 

  E[Oi
2] 

  E[Oi Xi] 

  Note: Integral is product of a Gaussian with an arbitrary function 
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Linearization as numerical 
integration 

  Product of a Gaussian with arbitrary function 

  Effective numerical integration with Gaussian quadrature method 
  Approximate integral as weighted sum over integration points 
  Gaussian quadrature defines location of points and weights 

  Exact if arbitrary function is polynomial of bounded degree 
  Number of integration points exponential in number of dimensions d 
  Exact monomials requires exponentially fewer points 

  For 2d+1 points, this method is equivalent to effective Unscented Kalman filter 
  Generalizes to many more points 
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Operations in non-linear Kalman filter 

  Compute 

  Start with   
  At each time step t: 

  Condition on observation (use numerical integration) 

  Prediction (Multiply transition model, use numerical integration) 

  Roll-up (marginalize previous time step) 

X1 

O1 =           

X5 X3 X4 X2 

O2 =           O3 =           O4 =           O5 =           
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Canonical form & Markov Nets 
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What you need to know about Gaussians, 
Kalman Filters, Gaussian MNs 

  Kalman filter 
  Probably most used BN 
  Assumes Gaussian distributions 
  Equivalent to linear system 
  Simple matrix operations for computations 

  Non-linear Kalman filter 
  Usually, observation or motion model not CLG 
  Use numerical integration to find Gaussian approximation 

  Gaussian Markov Nets 
  Sparsity in precision matrix equivalent to graph structure 

  Continuous and discrete (hybrid) model 
  Much harder, but doable and interesting (see book) 


