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Conditioning a Gaussian
" JE

= Joint Gaussian:
PXY) ~ N(w2)
m Conditional linear Gaussian: b A
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Gaussian is a “Linear Model”
- _:uY|X = My—f—UYX(x—’u,x)

m Conditional linear Gaussian: X
Y|X) ~ N(Ba+BX; 02 2 _ 2 O




Conditioning a Gaussian
" S
m Joint Gaussian:
P(X,Y) ~ N(w;Z)
m Conditional linear Gaussian:
PCYIX) ~ N(uyi; Zyvix)
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Py|x — HY + ZYszx(x — )
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Zyyvix = Zyy —ZyXZxxXXY
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Conditional Linear Gaussian (CLG) —

B} gﬁnﬁrﬁl case

m Conditional linear Gaussian:
P(Y[X) ~ N(Bo*+BX; Zyyx)
py)x = by +ZyxTyk (@ — )

—1
Tyyix = Lyy —ZyxTyxExy




Understanding a linear Gaussian —

th 2 mVariance increases over time
(motion noise adds up)

mObject doesn’t necessarily
move in a straight line

Tracking with a Gaussian 1

" JE
B p(Xo) ~ N(ug.Zp)
B P(Xiq[X) ~ NB X + B Zyiqx:)




Tracking with Gaussians 2 —

B Making ggigrvations

We have p(X))

Detector observes O=0,
Want to compute p(X;|O;=0;)
Use Bayes rule:

Require a CLG observation model
P(OIX) ~ N(W X; + v; Zq;x)

Operations in Kalman filter

Compute  p(X¢ | O1:4 = 01:4)

Start with p(Xg)
At each time step t:
Condition on observation
p(X¢ | 01:4) o< p(X¢ | 01:4—1)p(ot | Xt)
Prediction (Multiply transition model)
P(Xiq1, Xt | 01:4) = p( X1 | Xe)p(Xy | 01:4)
Roll-up (marginalize previous time step)

p(Xy1 o) = /X P(Xyg1,2¢ | 01:¢)dy
t

I’ll describe one implementation of KF, there are others
Information filter

10




Exponential family representation
f lan: Canonical Form

p(X1,..., Xn) =

1 —_
(2r)n/2|=|1/2 exp {_E(X )T (x - ,u)}

Canonical form

1 —
= G P )

1
= Kexp {UTX — EXT/\X}

m Standard form and canonical forms are related:
-1
po= N"n
> = A1

m Conditioning is easy in canonical form
m Marginalization easy in standard form
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Conditioning in canonical form
= olllp(X:|o01:4) < p(X¢ | o01:4—1)p(or | Xt)
m First multiply: (A, B) = p(A)p(B | A)
p(A): n1, M

p(B|A): m2, N
p(A,B): m3=mn1+mn2, N\3=NAN14+ N>

= Then, condition onvalueB=y P(A[B=y)
NAB=y = 1A —NABY
NaAIB=y = Naa
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Operations in Kalman filter

N

= Compute p(Xt | O1:¢t = Olit)

m Start with P(Xo)

m At eachtime step t:
Condition on observation
p(Xt | 01:) o p(Xt | 01:¢—1)p(or | Xt)
Prediction (Multiply transition model)
P(Xiq1, Xt | 01:4) = p(Xyp1 | Xe)p(Xt | 01:4)
Roll-up (marginalize previous time step)
p(Xyq1lo1:) = /ti(Xt—l—lvxt | o1:¢)day
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Prediction & roll-up in canonical form
= dp(Xip1 |l on) = [ p(Xega | a)p(ar | o1:)da
Xt

m First multiply: p(A, B) = p(A)p(B | A)

m Then, marginalize X;: pr(A) =/Bp(A,b)db

-1
772&?’ - 7714_/\AB/\BBUB
-1
/\ZLA = A4 _/\AB/\BB/\BA

What if observations are not CLG?
" JE
m Often observations are not CLG
CLGifO,=BX +pB,+¢
m Consider a motion detector
O, = 1 if person is likely to be in the region

Posterior is not Gaussian
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Linearization: incorporating non-
linear eviden

m p(O,|X)) not CLG, but...

m Find a Gaussian approximation of p(X;,0;)= p(X;) p(O,|X))

m Instantiate evidence O;=0, and obtain a Gaussian for
P(Xi|O=0)

m Why do we hope this would be any good?
Locally, Gaussian may be OK
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Linearization as integration

" JEE—
m Gaussian approximation of p(X;,0;)= p(X;) p(O;|X;)

m Need to compute moments
E[O]]
E[O?]

E[O; X]
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m Note: Integral is product of a Gaussian with an arbitrary function




Linearization as numerical

. integration

m Product of a Gaussian with arbitrary function

m Effective numerical integration with Gaussian quadrature method
Approximate integral as weighted sum over integration points
Gaussian quadrature defines location of points and weights

m Exact if arbitrary function is polynomial of bounded degree
=  Number of integration points exponential in number of dimensions d

m Exact monomials requires exponentially fewer points
For 2d+1 points, this method is equivalent to effective Unscented Kalman filter
Generalizes to many more points
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Operations in non-linear Kalman filter
N ’

= Compute p(Xt | O1:¢t = Olit)

m Start with P(Xo)

m At eachtime step t:
Condition on observation (use numerical integration)
p(Xt | 01:) o p(Xt | 01:¢—1)p(or | Xt)
Prediction (Multiply transition model, use numerical integration)
P(Xpg1, Xt | 01:0) = p(Xpp1 | X)p(Xe | 01:4)
Roll-up (marginalize previous time step)
p(Xpy1]o01:4) = /ti(Xt—l—lvxt | 01:¢)dzt
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Canonical form & Markov Nets

] 1 1 _
PO Xn) = e e {56 T - )

1
= Kexp {nTx . EXT/\X}
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What you need to know about Gaussians,

Kalman Filters, Gaussian MNs
" JEE
m Kalman filter
Probably most used BN
Assumes Gaussian distributions
Equivalent to linear system
Simple matrix operations for computations
m Non-linear Kalman filter
Usually, observation or motion model not CLG
Use numerical integration to find Gaussian approximation
m Gaussian Markov Nets
Sparsity in precision matrix equivalent to graph structure
m Continuous and discrete (hybrid) model
Much harder, but doable and interesting (see book)
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