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Thus far, fully supervised learning 

  We have assumed fully supervised learning: 

  Many real problems have missing data: 
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The general learning problem with 
missing data 

  Marginal likelihood – x is observed, z is missing: 

10-708 – ©Carlos Guestrin 2006-2008 4 

E-step 

  x is observed, z is missing 
  Compute probability of missing data given current choice of θ


  Q(z|x(j)) for each x(j)  
  e.g., probability computed during classification step 
  corresponds to “classification step” in K-means 
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Jensen’s inequality  

  Theorem: log ∑z P(z) f(z)  ≥ ∑z P(z) log f(z)  
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Applying Jensen’s inequality 

  Use:  log ∑z P(z) f(z)  ≥ ∑z P(z) log f(z)  
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The M-step maximizes lower bound on 
weighted data 

  Lower bound from Jensen’s: 

  Corresponds to weighted dataset: 
  <x(1),z=1> with weight Q(t+1)(z=1|x(1)) 
  <x(1),z=2> with weight Q(t+1)(z=2|x(1)) 
  <x(1),z=3> with weight Q(t+1)(z=3|x(1)) 
  <x(2),z=1> with weight Q(t+1)(z=1|x(2)) 
  <x(2),z=2> with weight Q(t+1)(z=2|x(2)) 
  <x(2),z=3> with weight Q(t+1)(z=3|x(2)) 
  … 
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The M-step 

  Maximization step: 

  Use expected counts instead of counts: 
  If learning requires Count(x,z) 
 Use EQ(t+1)[Count(x,z)] 
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Convergence of EM 

  Define potential function F(θ,Q): 

  EM corresponds to coordinate ascent on F 
 Thus, maximizes lower bound on marginal log likelihood 
 As seen in Machine Learning class last semester 
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Data likelihood for BNs 

  Given structure, log likelihood of fully 
observed data: 

Flu Allergy 

Sinus 

Headache Nose 
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Marginal likelihood 

  What if S is hidden? 

Flu Allergy 

Sinus 

Headache Nose 
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Log likelihood for BNs with hidden 
data 

  Marginal likelihood – O is observed, H is hidden 

Flu Allergy 

Sinus 

Headache Nose 
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E-step for BNs 

  E-step computes probability of hidden vars h given o 

  Corresponds to inference in BN 

Flu Allergy 
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Headache Nose 
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The M-step for BNs 

  Maximization step: 

  Use expected counts instead of counts: 
  If learning requires Count(h,o) 
 Use EQ(t+1)[Count(h,o)] 

Flu Allergy 

Sinus 

Headache Nose 
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M-step for each CPT 

  M-step decomposes per CPT 
 Standard MLE: 

 M-step uses expected counts: 

Flu Allergy 
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Computing expected counts 

  M-step requires expected counts: 
  Observe O=o 
  For a set of vars A, must compute ExCount(A=a) 
  Some of A in example j will be observed 

  denote by AO = aO
(j) 

  Some of A will be hidden 
  denote by AH 

  Use inference (E-step computes expected counts): 
  ExCount(t+1)(AO = aO, AH = aH) 

Flu Allergy 

Sinus 

Headache Nose 
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Data need not be hidden in 
the same way 

  When data is fully observed 
  A data point is  

  When data is partially observed 
  A data point is  

  But unobserved variables can be different for different data points 
  e.g., 

  Same framework, just change definition of expected counts 
  Observed vars in point j,  
  Consider set of vars A 

  ExCount(t+1)(A = a)  

Flu Allergy 

Sinus 

Headache Nose 

Poster printing 
  Poster session: 

  Friday Dec 1st, 3-6pm in the NSH Atrium. 
  There will be a popular vote for best poster. Invite your friends! 
  please be ready to set up your poster at 2:45pm sharp. 

  We will provide posterboards, easels and pins.  
  The posterboards are 30x40 inches 
  We don't have a specific poster format for you to use.   

  You can either bring a big poster or a print a set of regular sized pages and 
pin them together. 

  Unfortunately, we don't have a budget to pay for printing. If you are 
an SCS student, SCS has a poster printer you can use which prints 
on a 36" wide roll of paper.   
  If you are a student outside SCS, you will need to check with your department to 

see if there are printing facilities for big posters (I don't know what is offered 
outside SCS),  or print a set of regular sized pages. 

  We are looking forward to a great poster session! 
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Learning structure with missing data 
[K&F 18.4] 

  Known BN structure: Use expected counts, learning 
algorithm doesn’t change 

  Unknown BN structure:  
  Can use expected counts and score model as when we 

talked about structure learning 
  But, very slow... 

  e.g., greedy algorithm would need to redo inference for every 
edge we test… 

  (Much Faster) Structure-EM: Iterate: 
  compute expected counts 
  do a some structure search (e.g., many greedy steps) 
  repeat 

  Theorem: Converges to local optima of marginal log-
likelihood  
  details in the book 

Flu Allergy 

Sinus 

Headache Nose 
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What you need to know about 
learning BNs with missing data 

  EM for Bayes Nets 
  E-step: inference computes expected counts 

 Only need expected counts over Xi and Paxi 
  M-step: expected counts used to estimate 

parameters 
  Which variables are hidden can change per 

datapoint 
 Also, use labeled and unlabeled data ! some data 

points are complete, some include hidden variables 
  Structure-EM: 

  iterate between computing expected counts & many 
structure search steps 
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MNs & CRFs with missing data 
  MNs with missing data 

  Models P(X), part of X hidden 
  Use EM to optimize 
  Same ideas as BN 

  CRFs with missing data 
  Models P(Y|X) 
  What’s hidden? 

  Part of Y: 

  All of Y: 

  Part of X: 
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Kalman Filters 
Gaussian BNs 

Graphical Models – 10708 
Carlos Guestrin 
Carnegie Mellon University 

November 24th, 2008 
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 K&F: 6.1, 6.2, 6.3, 14.1, 14.2   
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Adventures of our BN hero 

  Compact representation for 
probability distributions 

  Fast inference 
  Fast learning 
  Approximate inference 

  But… Who are the most 
popular kids? 

1. Naïve Bayes 

2 and 3.  
Hidden Markov models (HMMs) 
Kalman Filters 
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The Kalman Filter 

  An HMM with Gaussian distributions 
  Has been around for at least 60 years 
  Possibly the most used graphical model ever 
  It’s what 

  does your cruise control 
  tracks missiles 
  controls robots 
  … 

  And it’s so simple…  
  Possibly explaining why it’s so used 

  Many interesting models build on it… 
  An example of a Gaussian BN (more on this later) 
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Example of KF – SLAT 
Simultaneous Localization and Tracking 

[Funiak, Guestrin, Paskin, Sukthankar ’06] 

  Place some cameras around an environment, don’t know where they are 
  Could measure all locations, but requires lots of grad. student (Stano) time 
  Intuition: 

  A person walks around 
  If camera 1 sees person, then camera 2 sees person, learn about relative 

positions of cameras 
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Example of KF – SLAT  
Simultaneous Localization and Tracking 

[Funiak, Guestrin, Paskin, Sukthankar ’06] 



14 

27 

Multivariate Gaussian 

Mean vector: 

Covariance matrix: 
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Conditioning a Gaussian 

  Joint Gaussian: 
  p(X,Y) ~ N(µ;Σ) 

  Conditional linear Gaussian: 
  p(Y|X) ~ N(µY|X; σ2

Y|X) 
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Gaussian is a “Linear Model” 

  Conditional linear Gaussian: 
 p(Y|X) ~ N(β0+βX; σ2) 
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Conditioning a Gaussian 

  Joint Gaussian: 
  p(X,Y) ~ N(µ;Σ) 

  Conditional linear Gaussian: 
  p(Y|X) ~ N(µY|X; ΣYY|X) 
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Conditional Linear Gaussian (CLG) –  
general case 

  Conditional linear Gaussian: 
 p(Y|X) ~ N(β0+ΒX; ΣYY|X) 
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Understanding a linear Gaussian – 
the 2d case  Variance increases over time 

(motion noise adds up) 
 Object doesn’t necessarily 
move in a straight line 
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Tracking with a Gaussian 1 

  p(X0) ~ N(µ0,Σ0) 
  p(Xi+1|Xi) ~ N(Β Xi + β; ΣXi+1|Xi) 
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Tracking with Gaussians 2 –  
Making observations 

  We have p(Xi) 
  Detector observes Oi=oi 
  Want to compute p(Xi|Oi=oi) 
  Use Bayes rule: 

  Require a CLG observation model 
  p(Oi|Xi) ~ N(W Xi + v; ΣOi|Xi) 


