| Readings: 18.1,18.2, 18.3 |

Graphical Models — 10708
Carlos Guestrin
Carnegie Mellon University

November 24th 2008

10-708 — ©Carlos Guestrin 2006-2008 1

Thus far, fully supervised learning
" S

m We have assumed fully supervised learning:

Lt Fof, Sk Hot NoF>

m Many real problems have missing data:
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The general learning problem with

_ missinﬁ data

m Marginal likelihood — x is observed, z is missing:
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= ZlogP(x(j) | 6)
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E-step
" JEE—
m X is observed, z is missing

= Compute probability of missing data given current choice of 6
Q(z|x®) for each x0) I
= e.g., probability computed during classification step
= correspon : ificati tep” in K-
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Jensen’s inequality
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m Theorem: log }, P(z) fzz) =Y. P(z)log f(z)
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Applying Jensen’s inequalityoi:;w o
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The M-step maximizes lower bound on

ht t C—Q'\S‘}\v\"}
m Lower bound from Jensen’s:
UD: W) > ZZQ(HU(Z | 2)) log P(z, 2@ | 6®)) +/V}\I(Q(t+l))
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m Corresponds to weighted dataset:
<x(1),z=1> with weight Q®*")(z=1|x(") ¢ 4
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<x(,z=2> with weight Qt*1(z=2|x(M) *!S
<x(,z=3> with weight Qt*(z=3|x(") ¢0J
<x@,z=1> with weight Qt*)(z=1|x@) ,
<x®@,z=2> with weight Qt*)(z=2|x®@) , 5
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,z=3> with weight Qt*1)(z=3|x
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The M-step -5 SL? Look
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LD : a(t)) > iZQ(H—l)(z | :r(j))logP(z,:v(j) ’ g(t)) + H(Q(t+1))
j=1 =z

m Maximization step:

m
(t+1) (t+1) (7) (7)
0 eargmgx;;Q (z | zY) log P(z,2V’ | 0)
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m Use expected counts instead of counts:
If learning requires Count(x,z)
Use Eq.qy[Count(x,z)]
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Convergence of EM
" JEE— —
m Define potential function F@): |

o) _ (x| 50 1og TZ:2716)
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~" m EM corresponds to coordinate ascent on F
Thus, maximizes lower bound on marginal log likelihood
As seen in Machine Learning class last semester
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Data likelihood for BNs /—
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m Given structure, log likelihood of fully <
observed data:
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Marginal likelihood ST
m What if S is hidden?

log P(D | 6g,G)
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Log likelihood for BNs with hidden

data poad B/
- — =3

= Marginal likelihood — O is observed, H is hidden
S : >
00:D) = Y logP(o) |0)
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= Y logY P(h,0W) | 6)
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E-step for BNs =

m E-step computes probability of hidden vars h given o

QUV(h] o) — P(h|0,6")
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m Corresponds to inference in BN ’
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The M-step for BNs =S
" JEE— I
m Maximization step:

(t+1) D (h 1 09 log P(h. ol
0 Hargmngl?Q (h | 0¥)log P(h,0" | 6)

m Use expected counts instead of counts:
If learning requires Count(h,0)
Use Eq.qy[Count(h,0)]
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M-step for each CPT

" JE K{M@
m M-step decomposes per CPT
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Standard MLE:
P(X;=uz;|Pay, =2) =
- >

Count(Xl- = x;, PaXi = Z)
Count(Pay; = z)
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M-step uses expected counts:
ExCount(X; = z;, Pay, =z)—,
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Computlng expected Counts /.\
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ExCount(X; = z;, Pay; —\;)

P(X; =x; | Pay = z) = ‘e
(Xi = z; | Pay, = 2) ExCounw WL%WNS \hoer

m M-step requires expected counts:

Observe O=o0 %j;;} ;;
For a set of vars A, must compute ExCount(A=a)
Some of A in example j will be observed
= denote by Ag = a0 As ¢ O Al ook
Some of A will be hidden
= denote by A, An /) 0 < §D &/

m Use inference (E-step computes expected counts): .)B
O\
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Data need not be hidden in ®\ >

- DSQmevay = =

m  When data is fully observed

A data point is ( = ;{\) AL:,‘C/ S:% > U\jl‘j "\0’{}’}{5'\

m When data is partially<otf);sﬂérﬁed 74"7& § £ )AL fw\*ﬁﬁj
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= But unobserved variables can be dlﬁerent for different data points
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m  Same framework, Just change definition of expected counts .
Observed vars in_pointj, () =~ (L\ﬂv\gfts 1% zc.ch \

Consider set of vars A AOJ - Ax/\ O\) l%m: A//%J
ExCount®)(A = a) o~ (98 o)
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Preilibes wyuelly dont

Poster prin pick o0 itk

m‘Poster session:
ﬁv@%@“ﬂec 1st, 3-6pm in the NSH Atrium,

There will be a popular vote for best poster. Invite your friends!
please be ready to set up your poster at 2:452m sharp.

m  We will provide posterboards, easels and pins.

The posterboards are 30x40 inches

We don't have a specificpmfﬁrmat for you to use.
= You can either bring a big poster or a print a set of regular sized pages and
pin them together. I
m “Unfortunately, we don't have a budget to pay for printing. If you are
an SCS student, SCS has a poster printer you can use which prints
on a 36" wide roll of paper.

If youare outside SCS, you will need to check with your department to
see if there are printing facilities for big posters (I don't know what is offered
outside SCS), or print a set of regular sized pages.

m We are looking forward to a great poster session!
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EM for BNs & identifiability: a
rficial di lon

m What happens if a leaf is never observed? X
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Learning structure with missing data
[K&F 18.4]

" JEE
= Known BN structure: Use expected counts, learning q

algorithm doesn’t change

= Unknown BN structure: / \

Can use expected counts and score model as when we C

talked about structure learning
But, very slow...

= e.g., greedy algorithm would need to redo inference for every
edge we test...

m (Much Faster) Structure-EM: lterate:
compute expected counts
do a some structure search (e.g., many greedy steps)
repeat
m Theorem: Converges to local optima of marginal log-
likelihood
details in the book
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What you need to know about

. Jearning BNs with missing data

m EM for Bayes Nets
m E-step: inference computes expected counts
Only need expected counts over X; and Pa,;
m M-step: expected counts used to estimate
parameters
m Which variables are hidden can change per
datapoint

Also, use labeled and unlabeled data — some data
points are complete, some include hidden variables

m Structure-EM:

iterate between computing expected counts & many
structure search steps
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MNs & CRFs with missing data

* JEE
= MNs with missing data
Models P(X), part of X hidden
Use EM to optimize _

Same ideas as BN
ATEEEAS PN

m CRFs with missing data i )
Models P(Y|X) ;\ Z Pwl w ZE%

What's hidden? Ve X(D 5)= Z (Oj o

n PartofY: \/O
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C %(/‘ QM \) r/\u\,SQ ‘/\\MQ/\ >< bML
e M hayl Ao ek T@’ﬁ %()

10-708 — ©Carlos Gues

11



Readings:
K&F: 6.1, 6.2, 6.3, 14.1, 14.2

Kalman Filters
Gaussian BNs
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Adventures of our BN hero
" JEE
m Compact representation for 1. Naive Bayes
probability distributions
m Fast inference
m Fast learning

m Approximate inference 2 and 3.

Hidden Markov models (HMMs)

m But... Who are the most Cja|man Filters
popular kids? 5w HMA with

fjrs Ty
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The Kalman Filter

" JEE
An HMM with Gaussian distributions
Has been around for at least 60 years
Possibly the most used graphical model ever
It's what

does your cruise control

tracks missiles
controls robots

And it's so simple...
Possibly ewmsed
Many interesting models build on it...
An example of a Gaussian BN (more on this later)
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Example of KF — SLAT

Simultaneous Localization and Tracking
“ JE
[Funiak, Guestrin, Paskin, Sukthankar '06]
m Place some cameras around an environment, don’t know where they are
m Could measure all locations, but requires lots of grad. student (Stano) time
m Intuition:
A person walks around

If camera 1 sees person, then camera 2 sees person, learn about relative
positions of cameras

A

J\»f/\/i:?
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Example of KF — SLAT

Simultaneous Localization and Tracking
" JEE

[Funiak, Guestrin, Paskin, Sukthankar '06]
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Multivariate Gaussian
" D
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Conditioning a Gaussian
" JE

m Joint Gaussian:
PX,Y) ~ N(w;Z)

m Conditional linear Gaussian: | ) A
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