

Unrolled DBN

- Start with P(X⁽⁰⁾)
- For each time step, add vars as defined by 2-TBN

BK Algorithm for approximate DBN inference [Boyen, Koller '98] Assumed density filtering: Choose a factored representation \hat{P} for the belief state Every time step, belief not representable with \hat{P} , project into representation Time \hat{P} \hat{P}

Computing factored belief state in the next time step

- Introduce observations in current time step
 - ☐ Use J-tree to calibrate time *t* beliefs
- Compute t+1 belief, project into approximate belief state
 - marginalize into desired factors
 - □ corresponds to KL projection
- Equivalent to computing marginals over factors directly
 - □ For each factor in *t*+1 step belief
 - Use variable elimination

11

Error accumulation

- Each time step, projection introduces error
- Will error add up?
 - \square causing unbounded approximation error as $t \rightarrow \infty$

Contraction in Markov process

13

BK Theorem

Error does not grow unboundedly!

■ Theorem: If Markov chain contracts at a rate of γ (usually very small), and assumed density projection at each time step has error bounded by ε (usually large) then the expected error at every iteration is bounded by ε/γ.

Thin Junction Tree Filters [Paskin '03]

- BK assumes fixed approximation clusters
- TJTF adapts clusters over time
 - □ attempt to minimize projection error

17

Hybrid DBN (many continuous and

discrete variables)

- DBN with large number of discrete and continuous variables
- # of mixture of Gaussian components blows up in one time step!
- Need many smart tricks...
 - □ e.g., see Lerner Thesis

Reverse Water Gas Shift System (RWGS) [Lerner et al. '02]

DBN summary

- DBNs
 - □ factored representation of HMMs/Kalman filters
 - □ sparse representation does not lead to efficient inference
- Assumed density filtering
 - □ BK factored belief state representation is assumed density
 - □ Contraction guarantees that error does blow up (but could still be large)
 - □ Thin junction tree filter adapts assumed density over time
 - □ Extensions for hybrid DBNs

19

Final

- Out: Later today
- Due: December 10th at NOON (STRICT DEADLINE)
- Start Early!!!

This semester...

- ч
 - Bayesian networks, Markov networks, factor graphs, decomposable models, junction trees, parameter learning, structure learning, semantics, exact inference, variable elimination, context-specific independence, approximate inference, sampling, importance sampling, MCMC, Gibbs, variational inference, loopy belief propagation, generalized belief propagation, Kikuchi, Bayesian learning, missing data, EM, Chow-Liu, IPF, Gaussian and hybrid models, discrete and continuous variables, temporal and template models, Kalman filter, linearization, conditional random fields, assumed density filtering, DBNs, BK, Causality,...
 - Just the beginning... ©

21

Quick overview of some hot topics...

- Maximum Margin Markov Networks
- Relational Probabilistic Models
- Influence Diagrams

Propositional Models and Generalization

- Suppose you learn a model for social networks for CMU from FaceBook data to predict movie preferences:
- How would you apply when new people join CMU?
- Can you apply it to make predictions a some "little technical college" in Cambridge, Mass?

27

Generalization requires Relational Models (e.g., see tutorials by Getoor & Domingos)

- Bayes nets defined specifically for an instance, e.g., CMU FaceBook today
 - fixed number of people
 - fixed relationships between people
 - ...
- Relational and first-order probabilistic models
 - talk about objects and relations between objects
 - allow us to represent different (and unknown) numbers
 - generalize knowledge learned from one domain to other, related, but different domains

Reasoning about decisions K&F Chapters 21 & 22

- So far, graphical models only have random variables
- What if we could make decisions that influence the probability of these variables?
 - e.g., steering angle for a car, buying stocks, choice of medical treatment
- How do we choose the best decision?
 - the one that maximizes the expected long-term utility
- How do we coordinate multiple decisions?

Many, many, many more topics we didn't even touch, e.g.,...

- Graph cuts for MPE inference
 - Exact inference in models with large treewidth, attractive/submodular potentials
- Active learning
 - What variables should I observe to learn?
- Topic Models, Latent Dirichlet Allocation
 - Unsupervised, discover topics in data
- Non-parametric models
 - What if you don't know the number of topics in your data?
- Continuous time models
 - DBNs have discrete time steps, but the world is continuous
- Learning theory for graphical models
 - How many samples do I need?
- Distributed algorithms for graphical models
 - We are moving to a parallel world... where are you?
- Graphical models for reinforcement learning
 - Combine DBNs with decision making to scale to huge multiagent problems
- Applications

31

What next?

- Seminars at CMU:
 - □ Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
 - □ Intelligence Seminar: <u>http://www.cs.cmu.edu/~iseminar/</u>
 - □ Machine Learning Department Seminar: http://calendar.cs.cmu.edu/ml/seminar
 - □ Statistics Department seminars: http://www.stat.cmu.edu/seminar
 - ...
- Journal
 - □ JMLR Journal of Machine Learning Research (free, on the web)
 - □ JAIR Journal of Al Research (free, on the web)
 - · ...
- Conferences:
 - □ UAI: Uncertainty in AI
 - NIPS: Neural Information Processing Systems
 - $\hfill \square$ \hfill Also ICML, AAAI, IJCAI and others
- Some MLD courses:
 - □ 10-705 Intermediate Statistics (Fall)
 - □ 10-702 Statistical Foundations of Machine Learning (Spring)
 - □ 10-725 Optimization (Spring 2010)
 - □ 10-615 Art that Learns (Spring)
 - □ ...