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Dynamic Bayesian network (DBN)
" S

= HMM defined by
Transition model P(Xt1|X®)
Observation model P(O®|X®)
Starting state distribution P(X(®)
m  DBN - Use Bayes net to represent each of these compactly
Starting state distribution P(X(®) is a BN
(silly) e.g, performance in grad. school DBN

= Vars: Happiness, Productivity, HiraBlility, Fame
= Observations: PapeR, Schmooze




Unrolled DBN

* JEE—
m Start with P(X(®)
m For each time step, add vars as defined by 2-TBN

“Sparse” DBN and fast inference




Even after one time step!!
" S

I What happens when we marginalize out time t?

“Sparse” DBN and fast inference 2

I Structured representation of belief often yields good approximate |

“Sparse” DBN Rimosu Fast inference

Time = t t+1 © t+2 1+3




BK Algorithm for approximate DBN inference
[Boyen, Koller '98]

* JE

m  Assumed density filtering:

Choose a factored representation ,‘3 for the belli\ef state
Every time step, belief not representable with P, project into representation

Time = t t+1 ++2 ++3

A simple example of BK: Fully-

B} Fag}grized Distribution

m  Assumed density:
Fully factorized

T P g




Computing Fully-Factorized
. Distribution at time t+1

m  Assumed density:
Fully factorized

Assumed Density Computing
for P(X®): for P(X,t+"):

General case for BK: Junction Tree

. Bepresents Distribution

m  Assumed density:
Fully factorized

True P(Xt): Ass;g'r“g& :t{?)')‘_Sity




Computing factored belief state in

B thﬁ pext timg step

m Introduce observations in current
time step
Use J-tree to calibrate time ¢t
beliefs
m Compute t+17 belief, project into
approximate belief state
marginalize into desired factors
corresponds to KL projection
m Equivalent to computing
marginals over factors directly
For each factor in t+17 step belief
= Use variable elimination
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Error accumulation
* JEE
m Each time step, projection introduces error

m Will error add up?
causing unbounded approximation error as t—oo




Contraction in Markov process
* JEE
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BK Theorem
" JEE

m Error does not grow unboundedly!

m Theorem: If Markov chain contracts at a rate of y (usually very
small), and assumed density projection at each time step has
error bounded by ¢ (usually large) then the expected error at
every iteration is bounded by &fy.
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Example — BAT network (rores etal]
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BK results [Boyen, Koller ’98]
" JEE
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Thin Junction Tree Filters paskin 03]
" N
m BK assumes fixed = = .. ... ...

approximation clusters RS
m TJTF adapts clusters CLLIiiiiiiiiiiiiiiin
over time i

attempt to minimize ~ IliiiiiIiIIIiIIIIIl

projection eror G
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Hybrid DBN (many contlnuous and
iscrete variables -- e

m DBN with large number of discrete
and continuous variables

m # of mixture of Gaussian components
blows up in one time step!

m Need many smart tricks...
e.g., see Lerner Thesis

Reverse Water Gas Shift System
(RWGS) [Lerner et al. '02]
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DBN summary
"

= DBNs
factored representation of HMMs/Kalman filters
sparse representation does not lead to efficient inference

m Assumed density filtering
BK — factored belief state representation is assumed density
Contraction guarantees that error does blow up (but could still be large)
Thin junction tree filter adapts assumed density over time
Extensions for hybrid DBNs
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Final
" JEE
m Out: Later today

m Due: December 10th at NOON (STRICT
DEADLINE)

m Start Early!!!
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This semester...
" SN

m Bayesian networks, Markov networks, factor graphs,
decomposable models, junction trees, parameter learning,
structure learning, semantics, exact inference, variable
elimination, context-specific independence, approximate
inference, sampling, importance sampling, MCMC, Gibbs,
variational inference, loopy belief propagation, generalized
belief propagation, Kikuchi, Bayesian learning, missing
data, EM, Chow-Liu, IPF, Gaussian and hybrid models,
discrete and continuous variables, temporal and template
models, Kalman filter, linearization, conditional random
fields, assumed density filtering, DBNs, BK, Causality,...

m Just the beginning... ©
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Quick overview of some hot topics...

“
m Maximum Margin Markov Networks

m Relational Probabilistic Models

m Influence Diagrams
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__Max SConditionaI) Likelihood
(o)

Estimation Classification

maximizew

log Pw(t(x) | x) arg max
CONEIE D)

log Pw(y | x) = w ' f(x,y) — 109 Zw(x)

Don’t need to learn entire distribution!
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_ OCR ExamBIe

= We want:
argmaxX,,orqg W' f( ===, word) = “brace”

= Equivalently: .
w' f(7== “brace”) > w' f( %==,"aaaaa")

i “br ” > WTf A\ b"
e brace’) ( aaaab’) >a lot!

w' f(FF, "brace”) > w' f( 7T, "2z222") |
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_ Max Marﬁin Estimation

= Goal: find w such that
wTf(,t(x)) > wf(x,y) XED  yt(X)

wT\[f(x,t(x)) - f(x,y)J >0
~

‘ WTAf,(y) = YAt (Y) ‘

= Maximize margin y
= Gain over y grows with # of mistakes in y: At (y)

Atm“craze”) =2 At(“zzzzz") =5
W Afpreezam(“craze”) = 2y W Afpazaa("22222") = 5y25

M3Ns: Maximum Margin Markov

' Networks |Taskar et al. ‘03]

Estimation Classification

MaXjwi<1 ¥

.
f(x,y) wl Af(y) > vAtx(y) arg maxy w ' f(x,y)
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Propositional Models and
Generalization

= Suppose you learn a model for social networks for CMU from
FaceBook data to predict movie preferences:

= How would you apply when new people join CMU?

= Can you apply it to make predictions a some “little technical
college” in Cambridge, Mass?
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Generalization requires Relational Models
(e.qg., see tutorials by Getoor & Domingos)
" JEE
= Bayes nets defined specifically for an instance,
e.g., CMU FaceBook today
= fixed number of people
= fixed relationships between people

= Relational and first-order probabilistic models
» talk about objects and relations between objects
= allow us to represent different (and unknown) numbers

= generalize knowledge learned from one domain to
other, related, but different domains
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Reasoning about decisions

o o 8E Chabters 21 & 22

= So far, graphical models only have random variables

= What if we could make decisions that influence the probability
of these variables?
= e.g., steering angle for a car, buying stocks, choice of medical treatment

= How do we choose the best decision?
= the one that maximizes the expected long-term utility

= How do we coordinate multiple decisions?
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_ ExamEIe of an Influence Diagram
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Many, many, many more topics we didn't
even touch, e.qg.,...

]
= Graph cuts for MPE inference
= Exact inference in models with large treewidth, attractive/submodular potentials
= Active learning
= What variables should I observe to learn?
= Topic Models, Latent Dirichlet Allocation
= Unsupervised, discover topics in data
= Non-parametric models
= What if you don’t know the number of topics in your data?
= Continuous time models
= DBNSs have discrete time steps, but the world is continuous
= Learning theory for graphical models
= How many samples do I need?
= Distributed algorithms for graphical models
= We are moving to a parallel world... where are you?
= Graphical models for reinforcement learning
= Combine DBNs with decision making to scale to huge multiagent problems
= Applications
| | mmm 31
What next?
]

m  Seminars at CMU:
Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
Intelligence Seminar: hitp://www.cs.cmu.edu/~iseminar/
Machine Learning Department Seminar: http://calendar.cs.cmu.edu/ml/seminar
Statistics Department seminars: http://www.stat.cmu.edu/seminar

= Journal:
JMLR - Journal of Machine Learning Research (free, on the web)
JAIR — Journal of Al Research (free, on the web)

m  Conferences:
UAI: Uncertainty in Al
NIPS: Neural Information Processing Systems
Also ICML, AAAI, IJCAI and others

m  Some MLD courses:
10-705 Intermediate Statistics (Fall)
10-702 Statistical Foundations of Machine Learning (Spring)
10-725 Optimization (Spring 2010)
10-615 Art that Learns (Spring)

32

16



