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Dynamic Bayesian Networks 

Beyond 10708 

Graphical Models – 10708 
Carlos Guestrin 
Carnegie Mellon University 

December 1st, 2006 

Readings: 
 K&F: 13.1, 13.2, 13.3 

Dynamic Bayesian network (DBN) 

  HMM defined by 
  Transition model P(X(t+1)|X(t)) 
  Observation model P(O(t)|X(t)) 
  Starting state distribution P(X(0)) 

  DBN – Use Bayes net to represent each of these compactly 
  Starting state distribution P(X(0)) is a BN 
  (silly) e.g, performance in grad. school DBN  

  Vars: Happiness, Productivity, HiraBlility, Fame 
  Observations: PapeR, Schmooze 
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Unrolled DBN 

  Start with P(X(0)) 
  For each time step, add vars as defined by 2-TBN 
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“Sparse” DBN and fast inference 

“Sparse” DBN      Fast inference  
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Even after one time step!! 

What happens when we marginalize out time t? 
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“Sparse” DBN and fast inference 2 

“Sparse” DBN            Fast inference Almost! 
 

Structured representation of belief often yields good approximate 

? 

B’’  

A’’   

B’’’  

C’’’  

A’’’  

Time t t+1 

C’  

A’  
t+2  t+3  

C

B

A 

B’  

C’’  

E’’  

D’’   

E’’’  

F’’’  

D’’’  

F’  

D’  

F

E

D 

E’  

F’’  



4 

7


BK Algorithm for approximate DBN inference 
[Boyen, Koller ’98] 

  Assumed density filtering: 
  Choose a factored representation P for the belief state 
  Every time step, belief not representable with P, project into representation 
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A simple example of BK: Fully-
Factorized Distribution 

  Assumed density: 
  Fully factorized 
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Computing Fully-Factorized  
Distribution at time t+1 

  Assumed density: 
  Fully factorized 
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General case for BK: Junction Tree 
Represents Distribution 

  Assumed density: 
  Fully factorized 
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Computing factored belief state in 
the next time step 

  Introduce observations in current 
time step 
  Use J-tree to calibrate time t 

beliefs 
  Compute t+1 belief, project into 

approximate belief state 
  marginalize into desired factors 
  corresponds to KL projection 

  Equivalent to computing 
marginals over factors directly 
  For each factor in t+1 step belief 

  Use variable elimination 
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Error accumulation 

  Each time step, projection introduces error 
  Will error add up? 

 causing unbounded approximation error as t!1 
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Contraction in Markov process  
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BK Theorem 
  Error does not grow unboundedly! 

  Theorem: If Markov chain contracts at a rate of γ (usually very 
small), and assumed density projection at each time step has 
error bounded by ε (usually large) then the expected error at 
every iteration is bounded by ε/γ. 
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Example – BAT network [Forbes et al.] 
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BK results [Boyen, Koller ’98]  
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Thin Junction Tree Filters [Paskin ’03]  

  BK assumes fixed 
approximation clusters 

  TJTF adapts clusters 
over time  
 attempt to minimize 

projection error 
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Hybrid DBN (many continuous and 
discrete variables) 
  DBN with large number of discrete 

and continuous variables 
  # of mixture of Gaussian components 

blows up in one time step! 
  Need many smart tricks… 

  e.g., see Lerner Thesis 

Reverse Water Gas Shift System 
(RWGS) [Lerner et al. ’02] 
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DBN summary 
  DBNs 

  factored representation of HMMs/Kalman filters 
  sparse representation does not lead to efficient inference 

  Assumed density filtering 
  BK – factored belief state representation is assumed density 
  Contraction guarantees that error does blow up (but could still be large) 
  Thin junction tree filter adapts assumed density over time 
  Extensions for hybrid DBNs 

Final 

  Out: Later today 
  Due: December 10th at NOON (STRICT 

DEADLINE) 
  Start Early!!! 
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And the winners are…  

  Popular Vote: 
 Learning and prediction of emotion components in a 

conversation using dynamic bayesian networks 
(Ekaterina Spriggs)  

  Instructors’ Choice: 
 Temporal model for Enron email dataset (Leman 

Akoglu and Seungil Huh) 
 Learning low-treewidth CRFs via Graph cuts (Dafna 

Shahaf) 
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This semester… 
  Bayesian networks, Markov networks, factor graphs, 

decomposable models, junction trees, parameter learning, 
structure learning, semantics, exact inference, variable 
elimination, context-specific independence, approximate 
inference, sampling, importance sampling, MCMC, Gibbs, 
variational inference, loopy belief propagation, generalized 
belief propagation, Kikuchi, Bayesian learning, missing 
data, EM, Chow-Liu, IPF, Gaussian and hybrid models, 
discrete and continuous variables, temporal and template 
models, Kalman filter, linearization, conditional random 
fields, assumed density filtering, DBNs, BK, Causality,… 

 Just the beginning…  
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Quick overview of some hot topics... 

  Maximum Margin Markov Networks 

  Relational Probabilistic Models 

  Influence Diagrams 
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Max (Conditional) Likelihood 

x1,t(x1) 
… 

 xm,t(xm) 

D 

f(x,y) 

Estimation Classification 

Don’t need to learn entire distribution! 
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OCR Example 
  We want: 

argmaxword wT f(       ,word) = “brace” 

  Equivalently: 
wT

 f(       ,“brace”) > wT
 f(       ,“aaaaa”) 

wT
 f(       ,“brace”) > wT

 f(       ,“aaaab”) 
… 
wT

 f(       ,“brace”) > wT
 f(       ,“zzzzz”) 

a lot! 
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  Goal:  find w such that 
  wTf(x,t(x)) > wTf(x,y)         x∈D    y≠t(x)  

         wT[f(x,t(x)) – f(x,y)] > 0 

  Maximize margin γ 
  Gain over y grows with # of mistakes in y: Δtx(y) 

Δt        (“craze”) = 2              Δt        (“zzzzz”) = 5 

w>Δfx(y) > 0 

Max Margin Estimation 

w>Δfx(y) ≥ γ  

A   A 

w>Δf            (“craze”) ≥ 2γ w>Δf            (“zzzzz”) ≥ 5γ 

Δtx(y) 
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M3Ns: Maximum Margin Markov 
Networks [Taskar et al. ’03]  

x1,t(x1) 
… 

 xm,t(xm) 

D 

f(x,y) 

Classification Estimation 
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Propositional Models and 
Generalization 

  Suppose you learn a model for social networks for CMU from 
FaceBook data to predict movie preferences: 

  How would you apply when new people join CMU? 

  Can you apply it to make predictions a some “little technical 
college” in Cambridge, Mass? 
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Generalization requires Relational Models  
(e.g., see tutorials by Getoor & Domingos) 

  Bayes nets defined specifically for an instance, 
e.g., CMU FaceBook today 
  fixed number of people 
  fixed relationships between people 
  … 

  Relational and first-order probabilistic models 
  talk about objects and relations between objects 
  allow us to represent different (and unknown) numbers 
  generalize knowledge learned from one domain to 

other, related, but different domains 
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Reasoning about decisions 
K&F Chapters 21 & 22 

  So far, graphical models only have random variables 

  What if we could make decisions that influence the probability  
of these variables? 
  e.g., steering angle for a car, buying stocks, choice of medical treatment 

  How do we choose the best decision? 
  the one that maximizes the expected long-term utility 

  How do we coordinate multiple decisions? 
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Example of an Influence Diagram 
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Many, many, many more topics we didn’t 
even touch, e.g.,... 
  Graph cuts for MPE inference 

  Exact inference in models with large treewidth, attractive/submodular potentials 

  Active learning 
  What variables should I observe to learn? 

  Topic Models, Latent Dirichlet Allocation 
  Unsupervised, discover topics in data 

  Non-parametric models 
  What if you don’t know the number of topics in your data? 

  Continuous time models 
  DBNs have discrete time steps, but the world is continuous 

  Learning theory for graphical models 
  How many samples do I need? 

  Distributed algorithms for graphical models 
  We are moving to a parallel world… where are you? 

  Graphical models for reinforcement learning 
  Combine DBNs with decision making to scale to huge multiagent problems 

  Applications 
  … 
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What next? 
  Seminars at CMU: 

  Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/ 
  Intelligence Seminar: http://www.cs.cmu.edu/~iseminar/ 
  Machine Learning Department Seminar: http://calendar.cs.cmu.edu/ml/seminar 
  Statistics Department seminars: http://www.stat.cmu.edu/seminar  
  … 

  Journal: 
  JMLR – Journal of Machine Learning Research (free, on the web) 
  JAIR – Journal of AI Research (free, on the web) 
  … 

  Conferences: 
  UAI: Uncertainty in AI 
  NIPS: Neural Information Processing Systems 
  Also ICML, AAAI, IJCAI and others 

  Some MLD courses: 
  10-705 Intermediate Statistics (Fall) 
  10-702 Statistical Foundations of Machine Learning (Spring) 
  10-725 Optimization (Spring 2010) 
  10-615 Art that Learns (Spring)  
  … 


