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Dynamic Bayesian network (DBN)
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Unrolled DBN
S

m Start with P(X(®)
m For each time step, add vars as defined by 2-TBN
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“Sparse” DBN and fast inference




Even after one time step!!
" S

I What happens when we marginalize out time t?

Time = t t+1

“Sparse” DBN and fast inference 2

I Structured representation of belief often yields good approximate |

“‘Sparse” DBN [gimos Fast inference
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BK Algorithm for aperDo>éim@0ateS DI%N inference
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Choose a factored representation P for the belief state

Every time step, belief not representable with P, project into representation
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A simple example of BK: Fully-

. Fag}grized Dﬁtﬁbﬁti‘cn—ij,

m  Assumed density:
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Computing Fully-Factorized
_ Distribution at time t+1 (57,41

m Assumed density: Ag f(,\?((\» «aM\ ZATBN)
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General case for BK: Junction Tree
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Computing factored belief state in

B thﬁ pext timg step

m Introduce observations in current

time step
Use J-tree to calibrate time t
beliefs =

m Compute t+17 belief, project into
approximate belief state
marginalize into desired factors
corresponds to KL projection
m Equivalent to computing Qm‘m
marginals over factors directly vy
For each factor in t+17 step belief
= Use \Wion
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Error accumulation

" JEE
m Each time step, projection introduces error
m Will error add up?

causing unbounded approximation error as 200
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Contraction in Markov process
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m Theorem: If Markov chain contracts at a rate of y (usually very
small), and assumed density projection at each time step has
error bounded by & (usually large) then the expected error at
every iteration is bounded by ely. 1




Example — BAT network (rores etal]
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BK results [Boyen, Koller ’98]

Typical evolution of error
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Thin Junction Tree Filters paskin 03]
" JE
m BK assumes fixed

approximation clusters
m TJTF adapts clusters

over time

empt to minimize
projection error
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Hybrid DBN (many contlnuous and
iscrete variables -- =B

m DBN with large number of discrete
and continuous variables

m # of mixture of Gaussian components
blows up in one time step!

m Need many smart tricks...

e.g., see Lerner Thesis
o=

Reverse Water Gas Shift System
(RWGS) [Lerner et al. '02]
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DBN summary
"

= DBNs
factored representation of HMMs/Kalman filters
sparse representation does not lead to efficient inference

m Assumed density filtering
BK — factored belief state representation is assumed density
Contraction guarantees that error does blow up (but could still be large)
Thin junction tree filter adapts assumed density over time
Extensions for hybrid DBNs
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Final
" JEE
= Out: Later today |, /s,

m Due: December 10th at NOON (STRICT
DEADLINE)

m Start Early!!!
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And the winners are...
" JEE
m Popular Vote:
Learning and prediction of emotion components in a
conversation using dynamic bayesian networks
(Ekaterina Spriggs)
m Instructors’ Choice:

Temporal model for Enron email dataset (Leman
Akoglu and Seungil Huh)

Learning low-treewidth CRFs via Graph cuts (Dafna
Shahaf)
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This semester...
= JEE

m Bayesian networks, Markov networks, factor graphs,
decomposable models, junction trees, parameter learning,
structure learning, semantics, exact inference, variable
elimination, context-specific independence, approximate
inference, sampling, importance sampling, MCMC, Gibbs,
variational inference, loopy belief propagation, generalized
belief propagation, Kikuchi, Bayesian learning, missing
data, EM, Chow-Liu, IPF, Gaussian and hybrid models,
discrete and continuous variables, temporal and template
models, Kalman filter, linearization, conditional random
fields, assumed density filtering, DBNs, BK, Causality,...

m Just the beginning... ©
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Quick overview of some hot topics...

* JEE—
= Maximum Margin Markov Networks

m Relational Probabilistic Models

m Influence Diagrams
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_ OCR Example

= We want:
argmax,,orqg W' f( === word) = “brace”
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_ Max Margin Estimation

= Goal: find w such that
wTf(x,t(x)) > wf(x,y) XED  yet(x)

wT\[f(x,t(x)) — f(x,y)J >0
~~

wiAf,(y) =z vAt,(y)

= Maximize margin y
= Gain over y grows with # of mistakes in y: At (y)

At pyarrae ' Craze”) = 2 At (" 22222") = 5
W Afoazzaa (" Craze”) = 2y W Afrazzaa (" 22222") = 5st
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M3Ns: Maximum Margin Markov

_ Networks |Taskar et al. '03]

E/stimation\ Classification
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Propositional Models and
Generalization

= Suppose you learn a model for social networks for CMU from
FaceBook data to predict movie preferences:

S

= How would you apply when new people join CMU?
|
= Can you apply it to make predictions a some “little technical
college” in Cambridge, Mass?

28
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Generalization requires Relational Models
(e.qg., see tutorials by Getoor & Domingos)

e
= Bayes net; dheﬁﬁnveré%épeciﬁcally for an instance,

e.g., CMU FaceBook today
= fixed number of people
» fixed relationships between people

= Relational and first-order probabilistic models
= talk about objects and relations between objects
= allow us to represent different (and unknown) numbers

= generalize knowledge learned from one domain to
other, related, but different domains
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Reasoning about decisions

o g8E Chapters 21 & 22

= So far, graphical models only haﬁwm
= What if we could make decisions that influence the probability
of these variables? -

= e.g., steering angle for a car, buying stocks, choice of medical treatment

= How do we choose the best decision?
= the one that maximizes the expected long-term utility

= How do we coordinate multiple decisions?

30
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. ExamEIe of an Influence Diagram

(Letter )

I D
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Many, many, many more topics we didn't
even touch, e.qg.,...

= Graph cuts for MPE inference
= Exact inference in models with large treewidth, attractive/submodular potentials
= Active learning
= What variables should I observe to learn?
= Topic Models, Latent Dirichlet Allocation
= Unsupervised, discover topics in data
= Non-parametric models
= What if you don’t know the number of topics in your data?
= Continuous time models
= DBNs have discrete time steps, but the world is continuous
= Learning theory for graphical models
= How many samples do I need?
= Distributed algorithms for graphical models
= We are moving to a parallel world... where are you?
= Graphical models for reinforcement learning
= Combine DBNs with decision making to scale to huge multiagent problems

= Applications
PP »
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What next?

at CMU:

Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
Intelligence Seminar: http://www.cs.cmu.edu/~iseminar/
Machine Learning Department Seminar: http://calendar.cs.cmu.edu/ml/seminar
Statistics Department seminars: http://www.stat.cmu.edu/seminar

Journal:
JMLR - Journal of Machine Learning Research (free, on the web)
JAIR — Journal of Al Research (free, on the web)

m  Conferences:
UAI: Uncertainty in Al
NIPS: Neural Information Processing Systems
Also ICML, AAAI, IJCAI and others

= Some MLD courses:
10-705 Intermediate Statistics (Fall)
10-702 Statistical Foundations of Machine Learning (Spring)
10-725 Optimization (Spring 2010)
10-615 Art that Learns (Spring)
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