

Computing factored belief state in the next time step Introduce observations in current time step Use J-tree to calibrate time t beliefs Compute t+1 belief, project into approximate belief state marginalize into desired factors corresponds to KL projection Equivalent to computing marginals over factors directly For each factor in t+1 step belief Use variable elimination

Thin Junction Tree Filters [Paskin '03] BK assumes fixed approximation clusters TJTF adapts clusters over time attempt to minimize projection error

DBN summary

- DBNs
 - □ factored representation of HMMs/Kalman filters
 - □ sparse representation does not lead to efficient inference
- Assumed density filtering
 - □ BK factored belief state representation is assumed density
 - □ Contraction guarantees that error does blow up (but could still be large)
 - □ Thin junction tree filter adapts assumed density over time
 - Extensions for hybrid DBNs

19

Final

- Out: Later today wednesday
- Due: December 10th at NOON (STRICT DEADLINE)
- Start Early!!!

And the winners are...

Popular Vote:

- Learning and prediction of emotion components in a conversation using dynamic bayesian networks (Ekaterina Spriggs)
- Instructors' Choice:
 - □ Temporal model for Enron email dataset (Leman Akoglu and Seungil Huh)
 - □ Learning low-treewidth CRFs via Graph cuts (Dafna Shahaf)

21

This semester...

- Bayesian networks, Markov networks, factor graphs, decomposable models, junction trees, parameter learning, structure learning, semantics, exact inference, variable elimination, context-specific independence, approximate inference, sampling, importance sampling, MCMC, Gibbs, variational inference, loopy belief propagation, generalized belief propagation, Kikuchi, Bayesian learning, missing data, EM, Chow-Liu, IPF, Gaussian and hybrid models, discrete and continuous variables, temporal and template models, Kalman filter, linearization, conditional random fields, assumed density filtering, DBNs, BK, Causality,...
- Just the beginning... ©

Quick overview of some hot topics...

- Maximum Margin Markov Networks
- Relational Probabilistic Models
- Influence Diagrams


```
    OCR Example
    We want:
        argmax<sub>word</sub> w<sup>T</sup> f( proce word) = "brace"
    Equivalently:
        w<sup>T</sup> f( proce word) > w<sup>T</sup> f( procee word) > w<sup>T</sup> f( proce word) > w<sup>T</sup> f( procee word) > w<sup>T</sup> f(
```

```
■ Max Margin Estimation

■ Goal: find w such that  \mathbf{w}^{\mathsf{T}}\mathbf{f}(\mathbf{x},\mathbf{t}(\mathbf{x})) > \mathbf{w}^{\mathsf{T}}\mathbf{f}(\mathbf{x},\mathbf{y}) \qquad \mathbf{x} \in \mathbb{D} \quad \mathbf{y} \neq \mathbf{t}(\mathbf{x}) 
 \mathbf{w}^{\mathsf{T}}\mathbf{f}(\mathbf{x},\mathbf{t}(\mathbf{x})) - \mathbf{f}(\mathbf{x},\mathbf{y})] > 0 
 \mathbf{w}^{\mathsf{T}}\Delta\mathbf{f}_{\mathbf{x}}(\mathbf{y}) \geq \gamma \Delta\mathbf{t}_{\mathbf{x}}(\mathbf{y}) 
 \bullet \quad \text{Maximize margin } \gamma 
 \bullet \quad \text{Gain over } \mathbf{y} \text{ grows with } \# \text{ of mistakes in } \mathbf{y} \text{: } \Delta\mathbf{t}_{\mathbf{x}}(\mathbf{y}) 
 \Delta\mathbf{t}_{\mathbf{x}}(\mathbf{x},\mathbf{y}) = 2 \qquad \Delta\mathbf{t}_{\mathbf{x}}(\mathbf{x},\mathbf{y}) 
 \Delta\mathbf{t}_{\mathbf{x}}(\mathbf{x},\mathbf{y}) = 2 \qquad \Delta\mathbf{t}_{\mathbf{x}}(\mathbf{x},\mathbf{y}) = 5 
 \mathbf{w}^{\mathsf{T}}\Delta\mathbf{f}_{\mathbf{x}}(\mathbf{x},\mathbf{y}) \geq 2\gamma \qquad \mathbf{w}^{\mathsf{T}}\Delta\mathbf{f}_{\mathbf{x}}(\mathbf{x},\mathbf{y}) \geq 5\gamma_{26}
```


Propositional Models and Generalization Suppose you learn a model for social networks for CMU from FaceBook data to predict movie preferences: How would you apply when new people join CMU? Can you apply it to make predictions a some "little technical college" in Cambridge, Mass?

Generalization requires Relational Models (e.g., see tutorials by Getoor & Domingos)

- Bayes nets defined specifically for an instance, e.g., CMU FaceBook today
 - fixed number of people
 - fixed relationships between people
 - ...
- Relational and first-order probabilistic models
 - talk about objects and relations between objects
 - allow us to represent different (and unknown) numbers
 - generalize knowledge learned from one domain to other, related, but different domains

29

Reasoning about decisions K&F Chapters 21 & 22

- So far, graphical models only have random variables
- What if we could make decisions that influence the probability of these variables?
 - e.g., steering angle for a car, buying stocks, choice of medical treatment
- How do we choose the best decision?
 - the one that maximizes the expected long-term utility
- How do we coordinate multiple decisions?

Many, many, many more topics we didn't even touch, e.g.,...

Graph cuts for MPE inference

- Exact inference in models with large treewidth, attractive/submodular potentials
- Active learning
 - What variables should I observe to learn?
- Topic Models, Latent Dirichlet Allocation
 - Unsupervised, discover topics in data
- Non-parametric models
 - What if you don't know the number of topics in your data?
- Continuous time models
 - DBNs have discrete time steps, but the world is continuous
- Learning theory for graphical models
 - How many samples do I need?
- Distributed algorithms for graphical models
 - We are moving to a parallel world... where are you?
- Graphical models for reinforcement learning
 - Combine DBNs with decision making to scale to huge multiagent problems
- Applications

What next?

Seminars at CMU:

- Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
- □ Intelligence Seminar: <u>http://www.cs.cmu.edu/~iseminar/</u>
- Machine Learning Department Seminar: http://calendar.cs.cmu.edu/ml/seminar
- □ Statistics Department seminars: http://www.stat.cmu.edu/seminar

Journal:

- JMLR Journal of Machine Learning Research (free, on the web)
 JAIR Journal of Al Research (free, on the web)

Conferences:

- □ UAI: Uncertainty in AI
- □ NIPS: Neural Information Processing Systems
- □ Also ICML, AAAI, IJCAI and others

Some MLD courses:

- □ 10-705 Intermediate Statistics (Fall)
- □ 10-702 Statistical Foundations of Machine Learning (Spring)
- □ 10-725 Optimization (Spring 2010)
- □ 10-615 Art that Learns (Spring)