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Introducing message passing with division 

  Variable elimination (message passing with 
multiplication) 
  message: 

  belief: 

  Message passing with division: 
  Belief: 

  Belief about separator: 

  message: 

C2: SE 

C4: GJS 

C1: CD 

C3: GDS 
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Factor division 

  Let X and Y be disjoint set 
of variables 

  Consider two factors: 
φ1(X,Y) and φ2(Y) 

  Factor ψ=φ1/φ2 
  0/0=0 
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  Separator potentials µij 
  one per edge (same both directions) 
  holds “last message” 
  initialized to 1 

  Message i!j 
  what does i think the separator potential 

should be? 
   σi!j 

  update belief for j: 
  pushing j to what i thinks about separator 

  replace separator potential: 

C2: SE 

C4: GJS 

C1: CD 

C3: GDS 

Lauritzen-Spiegelhalter Algorithm  
(a.k.a. belief propagation) Simplified description 

see reading for details 
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Convergence of Lauritzen-
Spiegelhalter Algorithm  

  Complexity: Linear in # cliques 
  for the “right” schedule over edges (leaves to root, 

then root to leaves) 

  Corollary: At convergence, every clique 
has correct belief 

C2 

C4 
C5 

C1 

C3 

C7 
C6 
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VE versus BP in clique trees 

  VE messages (the one that multiplies) 

  BP messages (the one that divides) 
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Clique tree invariant 

  Clique tree potential: 
 Product of clique potentials divided by separators potentials 

  Clique tree invariant: 
 P(X) = πΤ (X) 
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Belief propagation and clique tree 
invariant 

  Theorem: Invariant is maintained by BP algorithm! 

  BP reparameterizes clique potentials and 
separator potentials 
 At convergence, potentials and messages are marginal 

distributions 
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Subtree correctness 

  Informed message from i to j, if all messages into i 
(other than from j) are informed 
 Recursive definition (leaves always send informed 

messages) 
  Informed subtree: 

 All incoming messages informed 
  Theorem: 

 Potential of connected informed subtree T’ is marginal over 
scope[T’] 

  Corollary: 
 At convergence, clique tree is calibrated 

   πi = P(scope[πi]) 
   µij = P(scope[µij]) 
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Clique trees versus VE 

  Clique tree advantages 
 Multi-query settings 
  Incremental updates 
 Pre-computation makes complexity explicit 

  Clique tree disadvantages 
 Space requirements – no factors are “deleted” 
 Slower for single query 
 Local structure in factors may be lost when they are 

multiplied together into initial clique potential 
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Clique tree summary 
  Solve marginal queries for all variables in only twice the 

cost of query for one variable 
  Cliques correspond to maximal cliques in induced graph 
  Two message passing approaches 

  VE (the one that multiplies messages) 
  BP (the one that divides by old message) 

  Clique tree invariant 
  Clique tree potential is always the same 
  We are only reparameterizing clique potentials 

  Constructing clique tree for a BN 
  from elimination order 
  from triangulated (chordal) graph 

  Running time (only) exponential in size of largest clique 
  Solve exactly problems with thousands (or millions, or more) of 

variables, and cliques with tens of nodes (or less)  
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Swinging Couples revisited 

  This is no perfect map in BNs 
  But, an undirected model will be a perfect map 
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Potentials (or Factors) in Swinging 
Couples 

10-708 – ©Carlos Guestrin 2006 14 

Computing probabilities in Markov 
networks v. BNs 

  In a BN, can compute prob. of an 
instantiation by multiplying CPTs 

  In an Markov networks, can only 
compute ratio of probabilities directly 
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Normalization for computing 
probabilities 

  To compute actual probabilities, must compute 
normalization constant (also called partition function) 

  Computing partition function is hard! ! Must sum over 
all possible assignments 

10-708 – ©Carlos Guestrin 2006 16 

Factorization in Markov networks 

  Given an undirected graph H over variables 
X={X1,...,Xn} 

  A distribution P factorizes over H if 9  
  subsets of variables D1⊆X,…, Dm⊆X, such that the Di are 

fully connected in H 
  non-negative potentials (or factors) φ1(D1),…, φm(Dm) 

  also known as clique potentials 
  such that  

  Also called Markov random field H, or Gibbs 
distribution over H 
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Global Markov assumption in 
Markov networks 

  A path X1 – … – Xk is active when set of variables 
Z are observed if none of Xi 2 {X1,…,Xk} are 
observed (are part of Z)  

  Variables X are separated from Y given Z in 
graph H, sepH(X;Y|Z), if there is no active path 
between any X2X and any Y2Y given Z 

  The global Markov assumption  for a Markov 
network H is 


