Independencies encoded in BN

- We said: All you need is the local Markov assumption
 - \((X_i \perp \text{NonDescendants}_{X_i} \mid Pa_{X_i})\)
- But then we talked about other (in)dependencies
 - e.g., explaining away
 - \(A \Rightarrow B \Rightarrow C \Rightarrow D\)
 - \(A \perp D \mid B\)
- What are the independencies encoded by a BN?
 - Only assumption is local Markov
 - But many others can be derived using the algebra of conditional independencies!!!
Understanding independencies in BNs

– BNs with 3 nodes

Local Markov Assumption:
A variable X is independent of its non-descendants given its parents and only its parents.

Indirect causal effect:

\[
X \rightarrow Z \rightarrow Y
\]

Indirect evidential effect:

\[
X \rightarrow Z \rightarrow Y
\]

Common cause:

\[
X \rightarrow Z \rightarrow Y
\]

Some examples

V-structures

Common effect:

\[
X \rightarrow Z \rightarrow Y
\]

\[
X \rightarrow Z \rightarrow Y
\]
Understanding independencies in BNs – Some more examples

An active trail – Example

When are A and H independent?
Active trails formalized

- A trail $X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_k$ is an **active trail** when variables $O \subseteq \{X_1, \ldots, X_n\}$ are observed if for each consecutive triplet in the trail:
 - $X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is not observed ($X_i \notin O$)
 - $X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is not observed ($X_i \notin O$)
 - $X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is not observed ($X_i \notin O$)
 - $X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed ($X_i \in O$), or one of its descendents

Active trails and independence?

- **Theorem**: Variables X_i and X_j are independent given $Z \subseteq \{X_1, \ldots, X_n\}$ if there is **no active trail** between X_i and X_j when variables $Z \subseteq \{X_1, \ldots, X_n\}$ are observed.
More generally:

Soundness of d-separation

- Given BN structure G
- Set of independence assertions obtained by d-separation:
 - $I(G) = \{(X \perp Y | Z) : d-sep_G(X, Y | Z)\}$

Theorem: Soundness of d-separation
- If P factorizes over G then $I(G) \subseteq I(P)$

Interpretation: d-separation only captures true independencies
- Proof discussed when we talk about undirected models

Existence of dependency when not d-separated

- **Theorem:** If X and Y are not d-separated given Z, then X and Y are dependent given Z under some P that factorizes over G
- **Proof sketch:**
 - Choose an active trail between X and Y given Z
 - Make this trail dependent
 - Make all else uniform (independent) to avoid “canceling” out influence
More generally:
Completeness of d-separation

Theorem: Completeness of d-separation

- For “almost all” distributions where P factorizes over to G, we have that $I(G) = I(P)$
 - “almost all” distributions: except for a set of measure zero of parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)
 - Means that if all sets X & Y that are not d-separated given Z, then $\neg(X \perp Y | Z)$

- Proof sketch for very simple case:

Interpretation of completeness

Theorem: Completeness of d-separation

- For “almost all” distributions that P factorize over to G, we have that $I(G) = I(P)$

- BN graph is usually sufficient to capture all independence properties of the distribution!!!!

- But only for complete independence:
 - $P \Rightarrow (X=x \perp Y=y | Z=z), \forall x \in \text{Val}(X), y \in \text{Val}(Y), z \in \text{Val}(Z)$

- Often we have context-specific independence (CSI)
 - $\exists x \in \text{Val}(X), y \in \text{Val}(Y), z \in \text{Val}(Z): P \Rightarrow (X=x \perp Y=y | Z=z)$
 - Many factors may affect your grade
 - But if you are a frequentist, all other factors are irrelevant 😊
Algorithm for d-separation

- How do I check if X and Y are d-separated given Z
 - There can be exponentially-many trails between X and Y
- Two-pass linear time algorithm finds all d-separations for X
 1. Upward pass
 - Mark descendants of Z
 2. Breadth-first traversal from X
 - Stop traversal at a node if trail is "blocked"
 - (Some tricky details apply – see reading)

What you need to know

- d-separation and independence
 - sound procedure for finding independencies
 - existence of distributions with these independencies
 - (almost) all independencies can be read directly from graph without looking at CPTs
Announcements

- Homework 1:
 - Due next Wednesday – **beginning of class**!
 - It’s hard – start early, ask questions
- Audit policy
 - No sitting in, official auditors only, see course website

Building BNs from independence properties

- From d-separation we learned:
 - Start from local Markov assumptions, obtain all independence assumptions encoded by graph
 - For most P’s that factorize over G, $I(G) = I(P)$
 - All of this discussion was for a given G that is an I-map for P

- Now, give me a P, how can I get a G?
 - i.e., give me the independence assumptions entailed by P
 - Many G are “equivalent”, how do I represent this?
 - Most of this discussion is not about practical algorithms, but useful concepts that will be used by practical algorithms
 - Practical algs next time
Minimal I-maps

- One option:
 - G is an I-map for P
 - G is as simple as possible

- G is a **minimal I-map** for P if deleting any edges from G makes it no longer an I-map

Obtaining a minimal I-map

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X_1, ..., X_n
- For $i = 1$ to n
 - Add X_i to the network
 - Define parents of X_i, Pa_{X_i}, in graph as the minimal subset of $\{X_1, \ldots, X_{i-1}\}$ such that local Markov assumption holds – X_i independent of rest of $\{X_1, \ldots, X_{i-1}\}$, given parents Pa_{X_i}
 - Define/learn CPT – $P(X_i | \text{Pa}_{X_i})$
Minimal I-map not unique (or minimum)

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X_1, \ldots, X_n
- For $i = 1$ to n
 - Add X_i to the network
 - Define parents of X_i, Pa_{X_i}, in graph as the minimal subset of $\{X_1, \ldots, X_{i-1}\}$ such that local Markov assumption holds – X_i independent of rest of $\{X_1, \ldots, X_{i-1}\}$, given parents Pa_{X_i}
 - Define/learn CPT – $P(X_i | \text{Pa}_{X_i})$

Perfect maps (P-maps)

- I-maps are not unique and often not simple enough
- Define “simplest” G that is I-map for P
 - A BN structure G is a perfect map for a distribution P if $I(P) = I(G)$
- Our goal:
 - Find a perfect map!
 - Must address equivalent BNs
Inexistence of P-maps 1

- XOR (this is a hint for the homework)

Inexistence of P-maps 2

- (Slightly un-PC) swinging couples example
Obtaining a P-map

- Given the independence assertions that are true for P

- Assume that there exists a perfect map G^*
 - Want to find G^*

- Many structures may encode same independencies as G^*, when are we done?
 - Find all equivalent structures simultaneously!

I-Equivalence

- Two graphs G_1 and G_2 are **I-equivalent** if $I(G_1) = I(G_2)$

- **Equivalence class** of BN structures
 - Mutually-exclusive and exhaustive partition of graphs

- How do we characterize these equivalence classes?
Skeleton of a BN

- **Skeleton** of a BN structure G is an **undirected graph** over the same variables that has an edge $X \rightarrow Y$ for every $X \rightarrow Y$ or $Y \rightarrow X$ in G.

- (Little) **Lemma**: Two I-equivalent BN structures must have the same skeleton.

What about V-structures?

- **V-structures** are key property of BN structure.

- **Theorem**: If G_1 and G_2 have the same skeleton and V-structures, then G_1 and G_2 are I-equivalent.
Same V-structures not necessary

- **Theorem:** If G_1 and G_2 have the same skeleton and V-structures, then G_1 and G_2 are I-equivalent

- Though sufficient, same V-structures not necessary

Immoralities & I-Equivalence

- Key concept not V-structures, but “immoralities” (unmarried parents 😊)
 - $X \rightarrow Z \leftarrow Y$, with no arrow between X and Y
 - Important pattern: X and Y independent given their parents, but not given Z
 - (If edge exists between X and Y, we have covered the V-structure)

- **Theorem:** G_1 and G_2 have the same skeleton and immoralities if and only if G_1 and G_2 are I-equivalent
Obtaining a P-map

- Given the independence assertions that are true for P
 - Obtain skeleton
 - Obtain immoralities

- From skeleton and immoralities, obtain every (and any) BN structure from the equivalence class

Identifying the skeleton 1

- When is there an edge between X and Y?

- When is there no edge between X and Y?
Identifying the skeleton 2

- Assume d is max number of parents (d could be n)

- For each X_i and X_j
 - $E_{ij} \leftarrow \text{true}$
 - For each $U \subseteq X - \{X_i, X_j\}$, $|U| \leq d$
 - Is $(X_i \perp X_j | U)$?
 - $E_{ij} \leftarrow \text{false}$
 - If E_{ij} is true
 - Add edge $X_i - X_j$ to skeleton

Identifying immoralities

- Consider $X - Z - Y$ in skeleton, when should it be an immorality?

- Must be $X \rightarrow Z \leftarrow Y$ (immorality):
 - When X and Y are never independent given U, if $Z \notin U$

- Must not be $X \rightarrow Z \leftarrow Y$ (not immorality):
 - When there exists U with $Z \notin U$, such that X and Y are independent given U
From immoralities and skeleton to BN structures

- Representing BN equivalence class as a **partially-directed acyclic graph (PDAG)**

- Immoralities force direction on some other BN edges
- Full (polynomial-time) procedure described in reading

What you need to know

- **Minimal I-map**
 - every P has one, but usually many

- **Perfect map**
 - better choice for BN structure
 - not every P has one
 - can find one (if it exists) by considering I-equivalence
 - Two structures are I-equivalent if they have same skeleton and immoralities