

Independencies encoded in BN

- We said: All you need is the local Markov assumption
 - \square (X_i \bot NonDescendants_{Xi} | \mathbf{Pa}_{Xi})
- But then we talked about other (in)dependencies
 - □ e.g., explaining away

- A B ALBIC
- What are the independencies encoded by a BN?
 - □ Only assumption is local Markov
 - □ But many others can be derived using the algebra of conditional independencies!!!

10-708 – ©Carlos Guestrin 2006-2008

Active trails formalized

- A trail $X_1 X_2 \cdots X_k$ is an **active trail** when variables $O \subseteq \{X_1, \dots, X_n\}$ are observed if for each consecutive triplet in the trail:
 - $\square X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed $(X_i \in \mathbf{O})$, or one of its descendents

10 709 @Corlos Cupatria 2006 2009

7

Active trails and independence?

Theorem: Variables X_i and X_j are independent given Z⊆{X₁,...,X_n} if the is no active trail between X_i and X_j when variables Z⊆{X₁,...,X_n} are observed

10.708 - @Carlos Guestrin 2006.200

More generally: Soundness of d-separation

- Given BN structure G
- Set of independence assertions obtained by d-separation:
 - \square I(G) = {(X \perp Y|Z) : d-sep_G(X;Y|Z)}
- Theorem: Soundness of d-separation
 - \square If P factorizes over G then $I(G) \subseteq I(P)$
- Interpretation: d-separation only captures true independencies
- Proof discussed when we talk about undirected models

10-708 - @Carlos Guestrin 2006-2008

9

Existence of dependency when not d-separated

- **Theorem:** If X and Y are not d-separated given **Z**, then X and Y are dependent given **Z** under some *P* that factorizes
- Proof sketch:

over G

- □ Choose an active trail between X and Y given Z
- Make this trail dependent
- Make all else uniform (independent) to avoid "canceling" out influence

10-708 - @Carlos Guestrin 2006-2008

More generally: Completeness of d-separation

- Theorem: Completeness of d-separation
 - □ For "almost all" distributions where P factorizes over to G, we have that I(G) = I(P)
 - "almost all" distributions: except for a set of measure zero of parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)
 - Means that if all sets X & Y that are not d-separated given Z, then ¬(X⊥Y|Z)
- Proof sketch for very simple case:

10-708 - @Carlos Guestrin 2006-2008

11

Interpretation of completeness

- Theorem: Completeness of d-separation
 - \square For "almost all" distributions that P factorize over to G, we have that I(G) = I(P)
- BN graph is usually sufficient to capture all independence properties of the distribution!!!!
- But only for complete independence:
 - $\qed P \Rightarrow (X=x\bot Y=y \mid Z=z), \ \forall \ x\in Val(X), \ y\in Val(Y), \ z\in Val(Z)$
- Often we have context-specific independence (CSI)
 - $\ \ \Box \ \exists \ x{\in}\mathsf{Val}(X), \ y{\in}\mathsf{Val}(Y), \ z{\in}\mathsf{Val}(Z) : P {\: \Longrightarrow \:} (X{=}x\bot Y{=}y \mid Z{=}z)$
 - □ Many factors may affect your grade
 - □ But if you are a frequentist, all other factors are irrelevant ☺

10-708 – ©Carlos Guestrin 2006-2008

Algorithm for d-separation

- ٦
 - How do I check if X and Y are dseparated given Z
 - ☐ There can be exponentially-many trails between X and Y
- Two-pass linear time algorithm finds all d-separations for X
- 1. Upward pass
 - □ Mark descendants of Z
- 2. Breadth-first traversal from X
 - □ Stop traversal at a node if trail is "blocked"
 - □ (Some tricky details apply see reading)

G E E

13

What you need to know

- d-separation and independence
 - $\hfill \square$ sound procedure for finding independencies
 - □ existence of distributions with these independencies
 - □ (almost) all independencies can be read directly from graph without looking at CPTs

10-708 – @Carlos Guestrin 2006-2008

Announcements

- Homework 1
 - □ Due next Wednesday beginning of class!
 - ☐ It's hard start early, ask questions
- Audit policy
 - □ No sitting in, official auditors only, see course website

Building BNs from independence properties

- From d-separation we learned:
 - Start from local Markov assumptions, obtain all independence assumptions encoded by graph
 - \square For most *P*'s that factorize over *G*, I(G) = I(P)
 - □ All of this discussion was for a given G that is an I-map for P
- Now, give me a P, how can I get a G?
 - \square i.e., give me the independence assumptions entailed by P
 - ☐ Many G are "equivalent", how do I represent this?
 - ☐ Most of this discussion is not about practical algorithms, but useful concepts that will be used by practical algorithms
 - Practical algs next time

10-708 - ©Carlos Guestrin 2006-2008

Minimal I-maps

- One option:
 - ☐ G is an I-map for P
 - \Box *G* is as simple as possible
- G is a **minimal I-map** for P if deleting any edges from G makes it no longer an I-map

10-708 - @Carlos Guestrin 2006-2008

17

Obtaining a minimal I-map

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n
 - □ Add X_i to the network
 - □ Define parents of X_i, Pa_{Xi}, in graph as the minimal subset of {X₁,...,X_{i-1}} such that local Markov assumption holds X_i independent of rest of {X₁,...,X_{i-1}}, given parents Pa_{Xi}
 - □ Define/learn CPT P(X_i| **Pa**_{Xi})

Flu, Allergy, SinusInfection, Headache

10-708 – ©Carlos Guestrin 2006-2008

Minimal I-map not unique (or minimum)

- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n

assumptions

- \square Add X_i to the network
- □ Define parents of X_i, Pa_{Xi}, in graph as the minimal subset of {X₁,...,X_{i-1}} such that local Markov assumption holds X_i independent of rest of {X₁,...,X_{i-1}}, given parents Pa_{Xi}
- □ Define/learn CPT P(X_i| **Pa**_{Xi})

Flu, Allergy, SinusInfection, Headache

0-708 - ©Carlos Guestrin 2006-2008

19

Perfect maps (P-maps)

- I-maps are not unique and often not simple enough
- Define "simplest" G that is I-map for P
 - \square A BN structure G is a **perfect map** for a distribution P if I(P) = I(G)
- Our goal:
 - ☐ Find a perfect map!
 - ☐ Must address equivalent BNs

10-708 – ©Carlos Guestrin 2006-2008

Inexistence of P-maps 1

XOR (this is a hint for the homework)

10-708 - @Carlos Guestrin 2006-2008

21

Inexistence of P-maps 2

(Slightly un-PC) swinging couples example

0-708 - ©Carlos Guestrin 2006-2008

Obtaining a P-map

- Given the independence assertions that are true for P
- Assume that there exists a perfect map G* □ Want to find G*
- Many structures may encode same independencies as G*, when are we done?

☐ Find all equivalent structures simultaneously!

I-Equivalence

- Two graphs G_1 and G_2 are **I-equivalent** if $I(G_1) = I(G_2)$
- Equivalence class of BN structures
 - □ Mutually-exclusive and exhaustive partition of graphs

How do we characterize these equivalence classes?

Skeleton of a BN

- Skeleton of a BN structure G is an undirected graph over the same variables that has an edge X-Y for every X→Y or Y→X in G
- (Little) Lemma: Two I

 equivalent BN structures must
 have the same skeleton

0-708 - @Carlos Guestrin 2006-2008

What about V-structures?

- Ŋ
- V-structures are key property of BN structure

■ Theorem: If G₁ and G₂ have the same skeleton and V-structures, then G₁ and G₂ are I-equivalent

10-708 - @Carlos Guestrin 2006-2008

Same V-structures not necessary

- **Theorem:** If G_1 and G_2 have the same skeleton and V-structures, then G_1 and G_2 are I-equivalent
- Though sufficient, same V-structures not necessary

10-708 - @Carlos Guestrin 2006-2008

27

Immoralities & I-Equivalence

- Key concept not V-structures, but "immoralities" (unmarried parents ⑤)
 - $\square X \rightarrow Z \leftarrow Y$, with no arrow between X and Y
 - □ Important pattern: X and Y independent given their parents, but not given Z
 - □ (If edge exists between X and Y, we have *covered* the V-structure)
- **Theorem:** G_1 and G_2 have the same skeleton and immoralities if and only if G_1 and G_2 are I-equivalent

10-708 - ©Carlos Guestrin 2006-2008

Obtaining a P-map

- Given the independence assertions that are true for P
 - □ Obtain skeleton
 - □ Obtain immoralities
- From skeleton and immoralities, obtain every (and any) BN structure from the equivalence class

10-708 - @Carlos Guestrin 2006-2008

29

Identifying the skeleton 1

- When is there an edge between X and Y?
- When is there no edge between X and Y?

10-708 - ©Carlos Guestrin 2006-2008

Identifying the skeleton 2

- Assume d is max number of parents (d could be n)
- For each X_i and X_i
 - □ E_{ii} ← true
 - □ For each $\mathbf{U} \subseteq \mathbf{X} \{X_i, X_i\}$, $|\mathbf{U}| \le d$
 - Is $(X_i \perp X_j \mid \mathbf{U})$?
 - □ E_{ij} ← false
 - □ If E_{ii} is true
 - Add edge X Y to skeleton

10-708 - @Carlos Guestrin 2006-200

31

Identifying immoralities

- Consider X Z Y in skeleton, when should it be an immorality?
- Must be X → Z ← Y (immorality):
 - \square When X and Y are **never independent** given **U**, if Z \in **U**
- Must not be X → Z ← Y (not immorality):
 - □ When there exists U with Z∈U, such that X and Y are independent given U

10-708 - @Carlos Guestrin 2006-2008

From immoralities and skeleton to **BN** structures

 Representing BN equivalence class as a partially-directed acyclic graph (PDAG)

- Immoralities force direction on some other BN edges
- Full (polynomial-time) procedure described in reading

What you need to know

- Minimal I-map
 - □ every *P* has one, but usually many
- Perfect map
 - □ better choice for BN structure
 - □ not every *P* has one
 - □ can find one (if it exists) by considering I-equivalence
 - ☐ Two structures are I-equivalent if they have same skeleton and immoralities