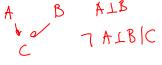


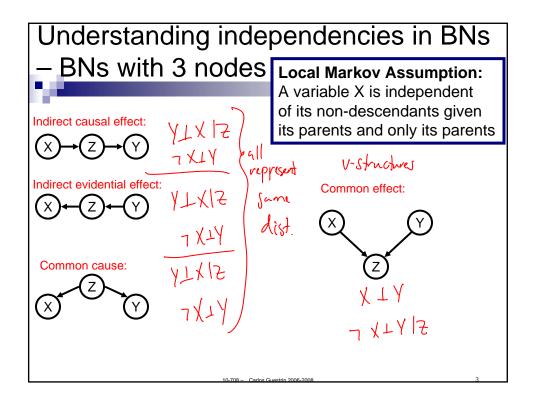
Independencies encoded in BN

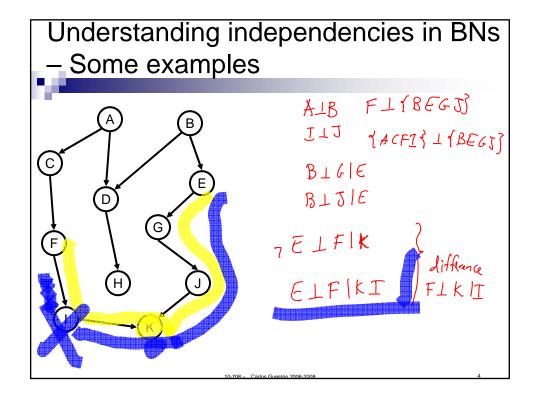
- We said: All you need is the local Markov assumption
 - \square ($X_i \perp NonDescendants_{Xi} \mid \mathbf{Pa}_{Xi}$)
- But then we talked about other (in)dependencies
 - □ e.g., explaining away

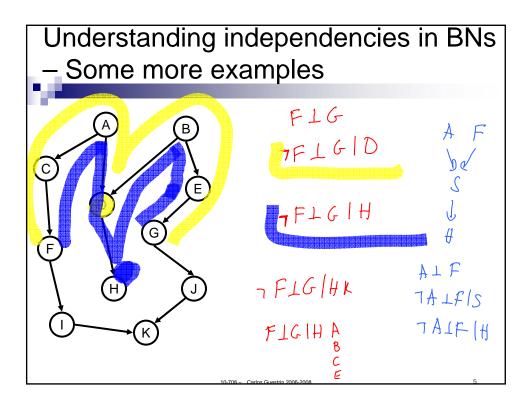


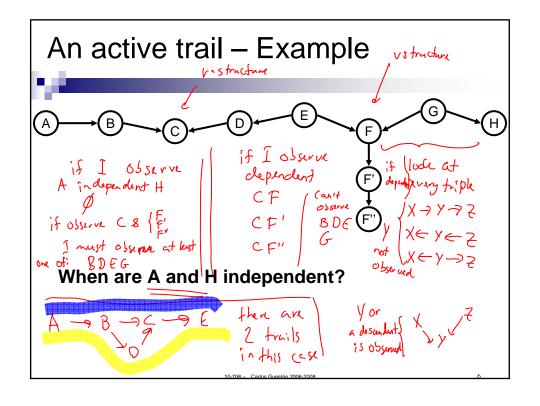
- What are the independencies encoded by a BN?
 - □ Only assumption is local Markov
 - □ But many others can be derived using the algebra of conditional independencies!!!

10-708 - Carlos Guestrin 2006-2008









Active trails formalized

trail is undirect a path that never visits a node twice

- A trail X₁ − X₂ − · · · − X_k is an active trail when variables Q (X₁,...,X_n) are observed if for each consecutive triplet in the trail:
 - $\square X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is not observed $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed $(X_i \in O)$, or one of its descendents

10-708 - Carlos Guestrin 2006-2008

Active trails and independence? Theorem: Variables X_i and X_j are independent given Z={X₁,...,X_n} if the is no active trail between X_i and X_j when variables Z={X₁,...,X_n} are observed we say that the and x_j are d-separated given 2 (depending separation) F 16 and active

More generally:

Soundness of d-separation

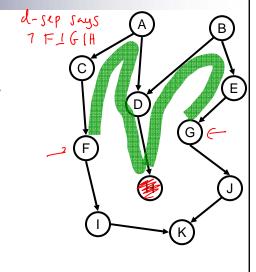
- Given BN structure G
- Set of independence assertions obtained by d-separation:
 - $\square I(G) = \{(\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}) : d\text{-sep}_G(\mathbf{X}; \mathbf{Y} | \mathbf{Z})\}$
- Theorem: Soundness of d-separation

Ie(6) = I(6) \square If P factorizes over G then $I(G) \subseteq I(P)$ not only Ie(6) c I(P)

- Interpretation: d-separation only captures true independencies
- Proof discussed when we talk about undirected models

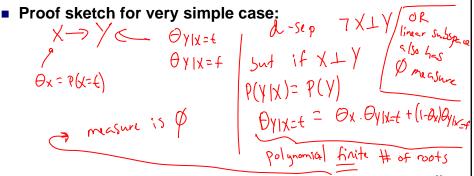
Existence of dependency when not d-separated

- **Theorem:** If X and Y are not d-separated given **Z**, then X and Y are dependent given **Z** under some *P* that factorizes over G
- Proof sketch:
 - □ Choose an active trail between X and Y given Z
 - Make this trail dependent
 - Make all else uniform (independent) to avoid "canceling" out influence



More generally: Completeness of d-separation

- Theorem: Completeness of d-separation
 - □ For "almost all" distributions where $\underline{P \text{ factorizes}}$ over to G, we have that I(G) = I(P)
 - "almost all" distributions: except for a set of measure zero of parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)
 - \bullet Means that if all sets **X** & **Y** that are not d-separated given **Z**, then $\neg(X \bot Y | Z)$



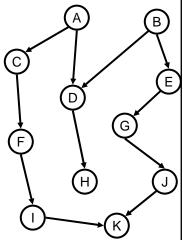
Interpretation of completeness

- Theorem: Completeness of d-separation
 - □ For "almost all" distributions that P factorize over to G, we have that I(G) = I(P)
- BN graph is usually sufficient to capture all independence properties of the distribution!!!!
- But only for complete independence:
 - $\square P \rightarrow (X = x \bot Y = y \mid Z = z), \forall x \in Val(X), y \in Val(Y), z \in Val(Z)$
- Often we have context-specific independence (CSI)

 - □ Many factors may affect your grade
 - □ But if you are a frequentist, all other factors are irrelevant ©

Algorithm for d-separation

- How do I check if X and Y are dseparated given Z
 - ☐ There can be exponentially-many trails between X and Y
- Two-pass linear time algorithm finds all d-separations for X
- 1. Upward pass
 - □ Mark descendants of Z
- 2. Breadth-first traversal from X
 - □ Stop traversal at a node if trail is "blocked"
 - ☐ (Some tricky details apply see reading)



10

What you need to know

- d-separation and independence

 \[
 \(\(\) \) \(
 - □ sound procedure for finding independencies
 - □ existence of distributions with these independencies

10-708 - Carlos Guestrin 2006-2008

Announcements

- Homework 1
 - □ Due next Wednesday **beginning of class!**
 - ☐ It's hard start early, ask questions
- Audit policy
 - □ No sitting in, official auditors only, see course website

Building BNs from independence properties

- From d-separation we learned:
 - □ Start from local Markov assumptions, obtain all independence assumptions encoded by graph
 - \square For most P's that factorize over G, I(G) = I(P)
 - □ All of this discussion was for a given G that is an I-map for P

 $I_{e}(G) \subseteq I(P)$

- Now, give me a P, how can I get a G?
 - □ i.e., give me the independence assumptions entailed by P
 - □ Many G are "equivalent", how do I represent this?
 - Most of this discussion is not about practical algorithms, but useful concepts that will be used by practical algorithms
 - Practical algs next time

10-708 - Carlos Guestrin 2006-2008

16

Minimal I-maps

- One option:
 - \square G is an I-map for P
 - \square *G* is as simple as possible
- G is a minimal I-map for P if deleting any edges from G makes it no longer an I-map

10-708 - Carlos Guestrin 2006-200

Obtaining a minimal I-map

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n
 - ☐ Add X_i to the network
 - □ Define parents of X_i , \mathbf{Pa}_{X_i} , in graph as the minimal subset of $\{X_1, ..., X_{i-1}\}$ such that local Markov assumption holds $-X_i$ independent of rest of $\{X_1, ..., X_{i-1}\}$, given parents \mathbf{Pa}_{X_i}
 - □ Define/learn CPT P(X_i| Pa_{xi})

Flu, Allergy, SinusInfection, Headache

FASH

FAIHIS

FAIHIS

A

S

if I remove

A->S

A

H

ALH

not true

in P

Proof by example,

minimal Imap

10-708 — Carlos Guestrin 2006-2008

Minimal I-map not unique (or minimum)

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n
 - □ Add X_i to the network
 - □ Define parents of X_i , \mathbf{Pa}_{X_i} , in graph as the minimal subset of $\{X_1, ..., X_{i-1}\}$ such that local Markov assumption holds $-X_i$ independent of rest of $\{X_1, ..., X_{i-1}\}$, given parents \mathbf{Pa}_{X_i}
 - □ Define/learn CPT P(X_i| **Pa**_{xi})

Flu, Allergy, SinusInfection, Headache
HSAF
AFIHU

H SS

FC

A

Still an Imap
more edges

Minimal? I do egnif capture

Ves!!

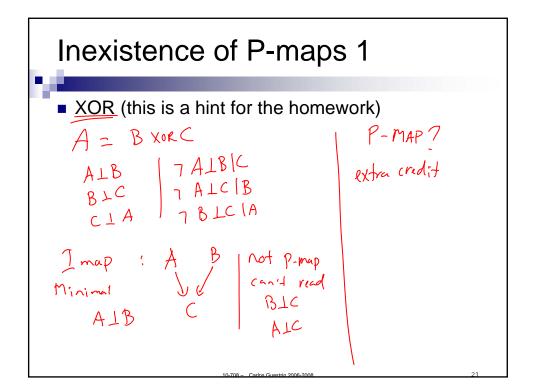
ALF

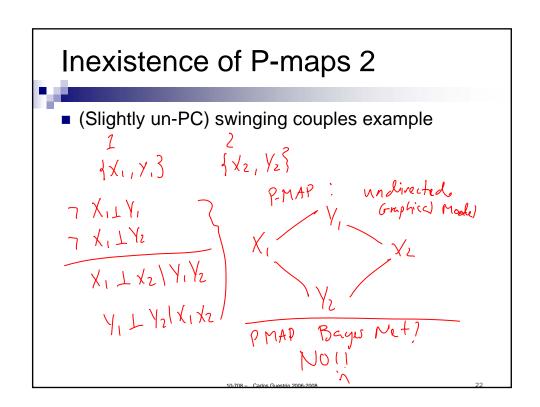
10-708 — Carlos Guestrin 2006-200

10

Perfect maps (P-maps)

- I-maps are <u>not unique</u> and often <u>not simple</u> enough
- Define "simplest" G that is I-map for P
 - \square A BN structure G is a **perfect map** for a distribution P if I(P) = I(G)
- Our goal:
 - ☐ Find a perfect map!
 - ☐ Must address equivalent BNs





Obtaining a P-map

- Given the independence assertions that are true for P
- Assume that there exists a perfect map G*
 Want to find G*
- Many structures may encode same independencies as G*, when are we done?
 - ☐ Find all equivalent structures simultaneously!

10-708 - Carlos Guestrin 2006-2008

23