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Joint distribution
= JEE

Sy

Why can we decompose? Local Markov Assumption!
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A general Bayes net
" S

m Set of random variables

Directed acyclic graph

m CPTs

Joint distribution: .
P(X1,...,Xn) = ] P(XZ- | Paxi)

=1

Local Markov Assumption:

A variable X is independent of its non-descendants given its
parents and only its parents — (Xi L NonDescendantsXi | PaXi)
008 6

10-708 — ©Carlos Guestrin 2006:-




Questions????

m What distributions can be represented by a BN?
m What BNs can represent a distribution?

m \What are the independence assumptions
encoded in a BN?

in addition to the local Markov assumption
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Independencies in Problem

BN:

—0

Graph G
encodes local
True distribution P independence
contains assumptions
independence
assertions

Key Representational Assumption:
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Today: The Representation Theorem —

_ True Indeﬁendencies to BN Factorization

BN: L Encodes independence
assumptions

_If conditional Joint probability
independencies distribution:
in BN are subset of n
P(X1,..., Xp) = ]_‘[ P (Xi | PaXl.)

conditional =
independencies in P

Today: The Representation Theorem —

BN Factorization to True Independencies
= S

BN: O\?(’O Encodes independence
assumptions
O O

Then conditional

If joint probability independencies
d|str|b11t|on: in BN are subset of
P(X1..... X0 = [] P(X; | Pay,) conditional
=t independencies in P
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Let’s start proving it for naive Bayes —

. From True Indeﬁendencies to BN Factorization

m Independence assumptions:
X, independent given C
m Let's assume that P satisfies independencies must
prove that P factorizes according to BN:
P(C.Xy,...,X,) = P(C) TT; P(X|C)
m Use chain rule!
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Let’s start proving it for naive Bayes —

. Frgm BN Factorization to True Independencies

m Let’'s assume that P factorizes according to the BN:
P(C,X,,....X,) = P(C) [T P(X|C)

m Prove the independence assumptions:
X, independent given C
Actually, (X LY | C), V X,Y subsets of {X,,...,X}
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Today: The Representation Theorem
= JEE

Encodes independence
assumptions

BN:

If conditional
independencies
in BN are subset of
conditional
independencies in P

Joint probability
distribution:

n
P(X1,...,Xn) = [] P(X;|Pay,)
i=1

If joint probability
distribution:

P(X1,...,Xn) = ﬁ P(X;| Pay,)

i=1

=)

Then conditional
independencies
in BN are subset of
conditional
independencies in P
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Local Markov assumption & I-maps
" I

m Local independence
assumptions in BN
structure G:

m Independence
assertions of P:

m BN structure G is an
I-map (independence
map) if:
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)
"

Local Markov Assumption:
A variable X is independent
of its non-descendants given

its parents and only its parents
(Xi L NonDescendantsy; | Pay;)




Factorized distributions
= JEE

m Given
Random vars X,,...,X, @

P distribution over vars
BN structure G over same vars

m P factorizes according to G if

n
P(X1,...,Xn) = [] P(X;| Pay,)
=1

15

BN Representation Theorem —
|-map to factorization

independencies Joint probabilit
in BN are subset of distribution:
conditional

n
independencies in P P(X1,..., Xn) = il;llp (x| Pay,)

P factorizes
according to G

Gis anl-map of P
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BN Representation Theorem —

. 2map to fagtgrizgtion: Proof, part 1

Gis an P factorizes
I-map of P according to G

P(X1,...,Xn) = [] P(X;| Pay,)

i=1

Topological Ordering:

= Number variables such that:

parent has lower number than child @
i.e., X; = X = i<j

Key: variable has lower number than
all of its

m DAGs always have (many) topological

orderings

find by a modification of breadth first
search
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BN Representation Theorem —

. Lmap o factorization: Proof, part 2

Gis an P factorizes
I-map of P according to G

P(X1,..., X)) =[] P (xi | PaXl.)

i=1

ALL YOU NEED:

Local Markov Assumption:

A variable X is independent

of its non-descendants given its parents
and only its parents

(Xi L NonDescendantsy; | Pay;)
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Defining a BN
"

m Given a set of variables and conditional independence assertions of P

m Choose an ordering on variables, e.g., X;, ..., X

n

m Fori=1ton
Add X; to the network

Define parents of X,, Paxi, in graph as the minimal subset of {X;,..., X4}
such that local Markov assumption holds — X; independent of rest of
{X4,.... X4}, given parents Pay

Define/learn CPT — P(X|| Pay;)
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. )
Adding edges doesn’t hurt
" JEE
m Theorem: Let G be an I-map for P, any DAG G’ that includes
the same directed edges as G is also an I-map for P.

Corollary 1: __is strictly more expressive than ____
Corollary 2: If G is an I-map for P, then adding edges still an I-map

m Proof:

%

N’
o@
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Announcements

" JEE

m Homework 1:
Out today
Due in 2 weeks — beginning of class!
It's hard — start early, ask questions

m Collaboration policy
OK to discuss in groups
Tell us on your paper who you talked with
Each person must write their own unique paper

No searching the web, papers, etc. for answers, we trust you
want to learn

= Audit policy
No sitting in, official auditors only, see course website

m Recitation tomorrow
Wean 5409, 5pm
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BN Representation Theorem —

. F rization to I-map

Then conditional

If joint probability independencies
distribution: in BN are subset of
n conditional
P(X1,...,Xn) = [[ P (Xi | ani) independencies in P
i=1
P factorizes

G is an I-map of P

according to G
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BN Representation Theorem —

. gdctorization to I-map: Proof

Then conditional

If joint probability independencies
distribution: in BN are subset of
conditional

n
P(Xy,..., X)) =[P (XZ- | Paxi) independencies in P
=1

P factorizes

according to G G is an I-map of P

Homework 11111 ©
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The BN Representation Theorem
" S

If conditional
independencies
in BN are subset of
conditional
independencies in P

Joint probability
distribution:

n
P(Xy,...,Xn) = [[ P(X;|Pay,)
i=1

Important because:
Every P has at least one BN structure G

Then conditional

If joint probability independencies
distribution: in BN are subset of
P(Xan. . Xy = ﬁ » (X_ | PaX.) _ condltlopal _
e — ’ independencies in P

Important because:
Read independencies of P from BN structure G
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What you need to know thus far
" J

m Independence & conditional independence

m Definition of a BN

m Local Markov assumption

m The representation theorems

Statement: G is an I-map for P if and only if P
factorizes according to G

Interpretation

25

Independencies encoded in BN
“ JE
m We said: All you need is the local Markov
assumption
(X; L NonDescendantsy; | Pay;)

m But then we talked about other (in)dependencies
e.g., explaining away

m What are the independencies encoded by a BN?
Only assumption is local Markov
But many others can be derived using the algebra of
conditional independencies!!!

26
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Understanding independencies in BNs

— BNs with 3 nodes
" S

Indirect causal effect:

OnOn0)

Indirect evidential effect:

OROn0)

Common cause:

CRN0

Local Markov Assumption:
A variable X is independent

of its non-descendants given
its parents and only its parents

Common effect:

N

Understanding independencies in BNs

- Some examﬁles
(A)

28
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Understanding independencies in BNs

_— Some more examples
===

An active trail — Example
" I

9@99990

When are A and H independent?
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Active trails formalized
“
m A trail X,—-X,—- - - =X,is an active trail when

variables OE{X,,...,X} are observed if for each
consecutive triplet in the trail:

X 4—X—Xi,,,and X is not observed (XZ0O)
Xi.4<X=Xi,,, and X; is not observed (XZO)
Xi.1<=X—=X,,, and X; is not observed (X,ZO)

Xi.4—X=X,,4,and X, is observed (X;c0), or one of
its descendents

31

Active trails and independence?
" JEE

m Theorem: Variables X;
and X; are independent
given Z&{X,,....X } if the is
no active trail between X
and X; when variables
ZC{X,,...,X,} are observed  (F)

32
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More generally:

. §an9n§§i gf d-separation

m Given BN structure G
m Set of independence assertions obtained by
d-separation:
I(G) = {(XLY|Z) : d-sep(X;Y|Z)}

m Theorem: Soundness of d-separation
If P factorizes over G then |(G) C I(P)

m Interpretation: d-separation only captures true
independencies

m Proof discussed when we talk about undirected models

33

Existence of dependency when not

B} g-iﬁgarated

m Theorem: If Xand Y are
not d-separated given Z,
then X and Y are
dependent given Z under
some P that factorizes
over G

m Proof sketch:

Choose an active trail
between X and Y given Z
Make this trail dependent
Make all else uniform
(independent) to avoid
“canceling” out influence

34




More generally:

. ggmglgtgnﬁg gf d-separation

m Theorem: Completeness of d-separation

For “almost all” distributions where P factorizes over to G,
we have that I(G) = |(P)

m “almost all” distributions: except for a set of measure zero of parameterizations of the
CPTs (assuming no finite set of parameterizations has positive measure)

= Means that if all sets X & Y that are not d-separated given Z, then 7(XL1Y|Z)
m Proof sketch for very simple case:
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Interpretation of completeness
" JEE

m Theorem: Completeness of d-separation
For “almost all” distributions that P factorize over to G, we
have that I(G) = I(P)

m BN graph is usually sufficient to capture all

independence properties of the distribution!!!!

m But only for complete independence:

P 9 (X=xL1Y=y | Z=z), V xeVal(X), yeVal(Y), zeVal(Z)

m Often we have context-specific independence (CSI)
3 xeVal(X), yeVal(Y), zeVal(Z): P 9 (X=xLY=y | Z=z)
Many factors may affect your grade
But if you are a frequentist, all other factors are irrelevant ©
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Algorithm for d-separation
= JE
m How do | check if X and Y are d-

separated given Z

There can be exponentially-many
trails between X and Y

m Two-pass linear time algorithm
finds all d-separations for X
m 1. Upward pass
Mark descendants of Z
m 2. Breadth-first traversal from X

Stop traversal at a node if trail is
“blocked”

(Some tricky details apply — see
reading)
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What you need to know
" JEE
m d-separation and independence
sound procedure for finding independencies
existence of distributions with these independencies

(almost) all independencies can be read directly from
graph without looking at CPTs
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