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BN Semantics 2 –  
Representation Theorem 
The revenge of d-separation 

Graphical Models – 10708 
Carlos Guestrin 
Carnegie Mellon University 

September 17th, 2008 

Readings: 
 K&F: 3.1, 3.2, 3.3.1, 3.3.2 
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Factored joint distribution - 
Preview 

Flu Allergy 

Sinus 

Headache Nose 
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Number of parameters 

Flu Allergy 

Sinus 

Headache Nose 
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The independence assumption  

Flu Allergy 

Sinus 

Headache Nose 

Local Markov Assumption: 
A variable X is independent 
of its non-descendants given 
its parents and only its parents  
(Xi ⊥ NonDescendantsXi | PaXi) 
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Joint distribution 

Flu Allergy 

Sinus 

Headache Nose 

Why can we decompose? Local Markov Assumption! 
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A general Bayes net 

  Set of random variables 

  Directed acyclic graph  

  CPTs 

  Joint distribution: 

  Local Markov Assumption: 
  A variable X is independent of its non-descendants given its 

parents and only its parents – (Xi ⊥ NonDescendantsXi | PaXi) 
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Questions???? 

  What distributions can be represented by a BN? 

  What BNs can represent a distribution? 

  What are the independence assumptions 
encoded in a BN? 
  in addition to the local Markov assumption 

Independencies in Problem 
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BN: 

Graph G 
encodes local 
independence 
assumptions 

World, Data, reality: 

True distribution P 
contains 

independence 
assertions 

Key Representational Assumption: 
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Today: The Representation Theorem –  
True Independencies to BN Factorization 

Joint probability 
distribution: Obtain 

BN: Encodes independence 
assumptions 

If conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 
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Today: The Representation Theorem –  
BN Factorization to True Independencies 

If joint probability 
distribution: 

BN: Encodes independence 
assumptions 

Obtain 

Then conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 
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Let’s start proving it for naïve Bayes –  
From True Independencies to BN Factorization 

  Independence assumptions: 
 Xi independent given C 

  Let’s assume that P satisfies independencies must 
prove that P factorizes according to BN: 
 P(C,X1,…,Xn) = P(C) ∏i P(Xi|C) 

  Use chain rule! 
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Let’s start proving it for naïve Bayes –  
From BN Factorization to True Independencies  

  Let’s assume that P factorizes according to the BN: 
 P(C,X1,…,Xn) = P(C) ∏i P(Xi|C) 

  Prove the independence assumptions: 
 Xi independent given C 
 Actually, (X ⊥ Y | C), 8 X,Y subsets of {X1,…,Xn} 
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Today: The Representation Theorem 

BN: Encodes independence 
assumptions 

Joint probability 
distribution: Obtain 

If conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 

If joint probability 
distribution: Obtain 

Then conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 
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Local Markov assumption & I-maps 

Flu Allergy 

Sinus 

Headache Nose 

Local Markov Assumption: 
A variable X is independent 
of its non-descendants given 
its parents and only its parents  
(Xi ⊥ NonDescendantsXi | PaXi) 

  Local independence 
assumptions in BN 
structure G: 

  Independence 
assertions of P: 

  BN structure G is an  
I-map (independence 
map) if:  
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Factorized distributions 

  Given  
 Random vars X1,…,Xn 

 P distribution over vars  
 BN structure G over same vars 

  P factorizes according to G if 

Flu Allergy 

Sinus 

Headache Nose 
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BN Representation Theorem –  
I-map to factorization 

Joint probability 
distribution: Obtain 

If conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 

G is an I-map of P  P factorizes  
according to G 
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BN Representation Theorem –  
I-map to factorization: Proof, part 1 

Flu Allergy 

Sinus 

Headache Nose 

Obtain G is an  
I-map of P  

P factorizes  
according to G 

  Number variables such that: 
  parent has lower number than child 
  i.e., Xi ! Xj ) i<j 
  Key: variable has lower number than 

all of its  

  DAGs always have (many) topological 
orderings 
  find by a modification of breadth first 

search 

Topological Ordering: 
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BN Representation Theorem –  
I-map to factorization: Proof, part 2 

Local Markov Assumption: 
A variable X is independent 
of its non-descendants given its parents 
and only its parents  
(Xi ⊥ NonDescendantsXi | PaXi) 

ALL YOU NEED: 

Flu Allergy 

Sinus 

Headache Nose 

Obtain G is an  
I-map of P  

P factorizes  
according to G 
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Defining a BN 
  Given a set of variables and conditional independence assertions of P 

  Choose an ordering on variables, e.g., X1, …, Xn  

  For i = 1 to n 
  Add Xi to the network 

  Define parents of Xi, PaXi
, in graph as the minimal subset of {X1,…,Xi-1} 

such that local Markov assumption holds – Xi independent of rest of   
{X1,…,Xi-1}, given parents PaXi 

  Define/learn CPT – P(Xi| PaXi) 

10-708 – ©Carlos Guestrin 2006-2008 20 

Adding edges doesn’t hurt 

  Theorem: Let G be an I-map for P, any DAG G’ that includes 
the same directed edges as G is also an I-map for P. 
  Corollary 1: __ is strictly more expressive than ___  
  Corollary 2: If G is an I-map for P, then adding edges still an I-map   

  Proof:  

Flu Allergy 

Sinus 

Headache Nose 

Airplane Season 
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Announcements 
  Homework 1: 

  Out today 
  Due in 2 weeks – beginning of class! 
  It’s hard – start early, ask questions 

  Collaboration policy 
  OK to discuss in groups 
  Tell us on your paper who you talked with 
  Each person must write their own unique paper 
  No searching the web, papers, etc. for answers, we trust you 

want to learn 

  Audit policy 
  No sitting in, official auditors only, see course website 

  Recitation tomorrow 
  Wean 5409, 5pm  
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BN Representation Theorem –  
 Factorization to I-map 

G is an I-map of P  P factorizes  
according to G 

If joint probability 
distribution: Obtain 

Then conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 
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BN Representation Theorem –  
 Factorization to I-map: Proof 

G is an I-map of P  P factorizes  
according to G 

If joint probability 
distribution: Obtain 

Then conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 

Homework 1!!!!  

10-708 – ©Carlos Guestrin 2006-2008 24 

The BN Representation Theorem 

If joint probability 
distribution: Obtain 

Then conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 

Joint probability 
distribution: Obtain 

If conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 

Important because:  
Every P has at least one BN structure G 

Important because:  
Read independencies of P from BN structure G 
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What you need to know thus far 

  Independence & conditional independence 
  Definition of a BN 
  Local Markov assumption 
  The representation theorems  

 Statement: G is an I-map for P if and only if P 
factorizes according to G  

  Interpretation 
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Independencies encoded in BN 

  We said: All you need is the local Markov 
assumption 
  (Xi ⊥ NonDescendantsXi | PaXi) 

  But then we talked about other (in)dependencies 
 e.g., explaining away 

  What are the independencies encoded by a BN? 
 Only assumption is local Markov 
 But many others can be derived using the algebra of 

conditional independencies!!! 



14 

10-708 – ©Carlos Guestrin 2006-2008 27 

Understanding independencies in BNs 
– BNs with 3 nodes 

Z 

Y X 

Local Markov Assumption: 
A variable X is independent 
of its non-descendants given 
its parents and only its parents  

Z Y X 

Z Y X 

Z 
Y X 

Indirect causal effect: 

Indirect evidential effect: 

Common cause: 

Common effect: 
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Understanding independencies in BNs 
– Some examples 

A 

H 

C 
E 

G 

D 

B 

F 

K 

J 

I 
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Understanding independencies in BNs 
– Some more examples 

A 

H 

C 
E 

G 

D 

B 

F 

K 

J 

I 
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An active trail – Example 

A H C 
E G 

D B F 

F’’ 

F’ 

When are A and H independent? 
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Active trails formalized 

  A trail X1 – X2 – · · · –Xk is an active trail when 
variables O⊆{X1,…,Xn} are observed if for each 
consecutive triplet in the trail: 
 Xi-1→Xi→Xi+1, and Xi is not observed (Xi∉O) 

 Xi-1←Xi←Xi+1, and Xi is not observed (Xi∉O) 

 Xi-1←Xi→Xi+1, and Xi is not observed (Xi∉O) 

 Xi-1→Xi←Xi+1, and Xi is observed (Xi2O), or one of 
its descendents  
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Active trails and independence? 

  Theorem: Variables Xi 
and Xj are independent 
given Z⊆{X1,…,Xn} if the is 
no active trail between Xi 
and Xj when variables  
Z⊆{X1,…,Xn} are observed 

A 

H 

C 
E 

G 

D 

B 

F 

K 

J 

I 
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More generally:  
Soundness of d-separation 

  Given BN structure G 
  Set of independence assertions obtained by            

d-separation: 
  I(G) = {(X⊥Y|Z) : d-sepG(X;Y|Z)} 

  Theorem: Soundness of d-separation 
  If P factorizes over G then I(G) ⊆ I(P) 

  Interpretation: d-separation only captures true 
independencies 

  Proof discussed when we talk about undirected models 
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Existence of dependency when not 
d-separated 

  Theorem: If X and Y are 
not d-separated given Z, 
then X and Y are 
dependent given Z under 
some P that factorizes 
over G  

  Proof sketch:  
 Choose an active trail 

between X and Y given Z 
 Make this trail dependent  
 Make all else uniform 

(independent) to avoid 
“canceling” out influence 

A 

H 

C 
E 

G 

D 

B 

F 

K 

J 

I 
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More generally:  
Completeness of d-separation 

  Theorem: Completeness of d-separation 
  For “almost all” distributions where P factorizes over to G,  

we have that I(G) = I(P) 
  “almost all” distributions: except for a set of measure zero of parameterizations of the 

CPTs (assuming no finite set of parameterizations has positive measure) 
  Means that if all sets X & Y that are not d-separated given Z, then ¬ (X⊥Y|Z) 

  Proof sketch for very simple case: 
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Interpretation of completeness 

  Theorem: Completeness of d-separation 
 For “almost all” distributions that P factorize over to G, we 

have that I(G) = I(P) 
  BN graph is usually sufficient to capture all 

independence properties of the distribution!!!! 
  But only for complete independence: 

 P (X=x⊥Y=y | Z=z), 8 x2Val(X), y2Val(Y), z2Val(Z) 

  Often we have context-specific independence (CSI) 
   9 x2Val(X), y2Val(Y), z2Val(Z): P (X=x⊥Y=y | Z=z) 
 Many factors may affect your grade 
 But if you are a frequentist, all other factors are irrelevant  



19 

10-708 – ©Carlos Guestrin 2006-2008 37 

Algorithm for d-separation 

  How do I check if X and Y are d-
separated given Z 
 There can be exponentially-many 

trails between X and Y 
  Two-pass linear time algorithm 

finds all d-separations for X 
  1. Upward pass 

 Mark descendants of Z 
  2. Breadth-first traversal from X 

 Stop traversal at a node if trail is 
“blocked” 

  (Some tricky details apply – see 
reading) 

A 

H 

C 
E 

G 

D 

B 

F 

K 

J 

I 
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What you need to know 

  d-separation and independence 
 sound procedure for finding independencies 
 existence of distributions with these independencies 
  (almost) all independencies can be read directly from 

graph without looking at CPTs  


