

Why can we decompose? Local Markov Assumption!

A general Bayes net

- Set of random variables
- Directed acyclic graph
- CPTs

■ Joint distribution:
$$P(X_1, \dots, X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$$

- Local Markov Assumption:
 - □ A variable X is independent of its non-descendants given its parents and only its parents – (Xi \perp NonDescendantsXi | PaXi)

Questions????

- What distributions can be represented by a BN?
- What BNs can represent a distribution?
- What are the independence assumptions encoded in a BN?
 - ☐ in addition to the local Markov assumption

10-708 - @Carlos Guestrin 2006-2008

.

World, Data, reality:

True distribution P contains independence assertions

BN:

Graph G encodes local independence assumptions

Key Representational Assumption:

10-708 – ©Carlos Guestrin 2006-200

Today: The Representation Theorem – True Independencies to BN Factorization

BN:

Encodes independence assumptions

If conditional independencies in BN are subset of conditional independencies in P

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

10-708 - @Carlos Guestrin 2006-2008

9

Today: The Representation Theorem – BN Factorization to True Independencies

BN:

Encodes independence assumptions

If joint probability distribution:

Then conditional independencies in BN are subset of conditional independencies in P

10-708 – ©Carlos Guestrin 2006-2008

Let's start proving it for naïve Bayes – From True Independencies to BN Factorization

- Independence assumptions:
 - □ X_i independent given C
- Let's assume that P satisfies independencies must prove that P factorizes according to BN:
 - \square P(C,X₁,...,X_n) = P(C) \prod_i P(X_i|C)
- Use chain rule!

10-708 - @Carlos Guestrin 2006-200

11

Let's start proving it for naïve Bayes -

- From BN Factorization to True Independencies
- Let's assume that *P* factorizes according to the BN:
 - \square P(C,X₁,...,X_n) = P(C) \prod_i P(X_i|C)
- Prove the independence assumptions:
 - □ X_i independent given C
 - \square Actually, (**X** \perp **Y** | C), \forall **X**,**Y** subsets of {X₁,...,X_n}

10-708 – @Carlos Guestrin 2006-2008

Factorized distributions

- Given
 - \square Random vars $X_1,...,X_n$
 - ☐ P distribution over vars
 - □ BN structure *G* over same vars
- P factorizes according to G if

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

0-708 - @Carlos Guestrin 2006-200

4-

BN Representation Theorem – I-map to factorization

If conditional independencies in BN are subset of conditional independencies in P

Obtain

Joint probability distribution:

 $P(X_1,...,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$

G is an I-map of P

P factorizes according to G

0-708 – @Carlos Guestrin 2006-2008

BN Representation Theorem --map to factorization: Proof, part 1 G is an P factorizes Obtain I-map of P according to G $P(X_1,\ldots,X_n) = \prod P(X_i \mid \mathbf{Pa}_{X_i})$ **Topological Ordering:** Number variables such that: parent has lower number than child Flu Allergy \square i.e., $X_i \rightarrow X_i \Rightarrow i < j$ ☐ Key: variable has lower number than Sinus all of its Headach Nose DAGs always have (many) topological orderings find by a modification of breadth first search

Defining a BN

- Given a set of variables and conditional independence assertions of P
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n
 - □ Add X_i to the network
 - □ Define parents of X_i , \mathbf{Pa}_{X_i} , in graph as the minimal subset of $\{X_1,...,X_{i-1}\}$ such that local Markov assumption holds $-X_i$ independent of rest of $\{X_1,...,X_{i-1}\}$, given parents \mathbf{Pa}_{X_i}
 - □ Define/learn CPT P(X_i| **Pa**_{Xi})

10-708 - @Carlos Guestrin 2006-2008

19

Adding edges doesn't hurt

- **Theorem**: Let **G** be an I-map for **P**, any DAG **G**' that includes the same directed edges as **G** is also an I-map for **P**.
 - □ Corollary 1: __ is strictly more expressive than ___
 - □ Corollary 2: If G is an I-map for P, then adding edges still an I-map
- Proof:

10-708 – @Carlos Guestrin 2006-2008

Announcements

- Homework 1:
 - □ Out today
 - □ Due in 2 weeks **beginning of class!**
 - ☐ It's hard start early, ask questions
- Collaboration policy
 - □ OK to discuss in groups
 - ☐ Tell us on your paper who you talked with
 - ☐ Each person must write their **own unique paper**
 - □ No searching the web, papers, etc. for answers, we trust you want to learn
- Audit policy
 - □ No sitting in, official auditors only, see course website
- Recitation tomorrow
 - □ Wean 5409, 5pm

10-708 - @Carlos Guestrin 2006-2008

21

BN Representation Theorem – Factorization to I-map

If joint probability distribution:

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

 $P(X_1,...,X_n) = \prod_{i=1}^n P(X_i | \mathbf{Pa}_{X_i})$ **P** factorizes

according to G

G is an I-map of P

10-708 - @Carlos Guestrin 2006-2008

BN Representation Theorem – Factorization to I-map: **Proof**

If joint probability distribution:

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

 $P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$

P factorizes according to G

G is an I-map of P

Homework 1!!!! ©

10-708 - @Carlos Guestrin 2006-2008

23

The BN Representation Theorem

If conditional independencies in BN are subset of conditional independencies in P

Obtain

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Important because:

Every P has at least one BN structure G

If joint probability distribution:

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

 $P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$

Important because:

Read independencies of P from BN structure G

What you need to know thus far

- Independence & conditional independence
- Definition of a BN
- Local Markov assumption
- The representation theorems
 - □ Statement: G is an I-map for P if and only if P factorizes according to G
 - Interpretation

10-708 - @Carlos Guestrin 2006-2008

25

Independencies encoded in BN

- We said: All you need is the local Markov assumption
 - \square (X_i \bot NonDescendants_{Xi} | \mathbf{Pa}_{Xi})
- But then we talked about other (in)dependencies
 - □ e.g., explaining away
- What are the independencies encoded by a BN?
 - □ Only assumption is local Markov
 - □ But many others can be derived using the algebra of conditional independencies!!!

10-708 – ©Carlos Guestrin 2006-2008

Active trails formalized

- A trail X₁ − X₂ − · · · −X_k is an active trail when variables O⊆{X₁,...,X_n} are observed if for each consecutive triplet in the trail:
 - $\square X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed $(X_i \in \mathbf{O})$, or one of its descendents

10 709 @Corlos Cupatria 2006 2009

..

Active trails and independence?

Theorem: Variables X_i and X_j are independent given Z⊆{X₁,...,X_n} if the is no active trail between X_i and X_j when variables Z⊆{X₁,...,X_n} are observed

10-708 - ©Carlos Guestrin 2006-2008

More generally: Soundness of d-separation

- Given BN structure G
- Set of independence assertions obtained by d-separation:
 - \square I(G) = {(X \perp Y|Z) : d-sep_G(X;Y|Z)}
- Theorem: Soundness of d-separation
 - \square If P factorizes over G then $I(G) \subseteq I(P)$
- Interpretation: d-separation only captures true independencies
- Proof discussed when we talk about undirected models

10-708 - @Carlos Guestrin 2006-2008

33

Existence of dependency when not d-separated

- d-separated
- Theorem: If X and Y are not d-separated given Z, then X and Y are dependent given Z under some P that factorizes over G
- Proof sketch:
 - □ Choose an active trail between X and Y given Z
 - ☐ Make this trail dependent
 - Make all else uniform (independent) to avoid "canceling" out influence

10-708 - @Carlos Guestrin 2006-2008

More generally: Completeness of d-separation

- Theorem: Completeness of d-separation
 - □ For "almost all" distributions where P factorizes over to G, we have that I(G) = I(P)
 - "almost all" distributions: except for a set of measure zero of parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)
 - Means that if all sets X & Y that are not d-separated given Z, then ¬(X⊥Y|Z)
- Proof sketch for very simple case:

10-708 - @Carlos Guestrin 2006-2008

35

Interpretation of completeness

- Theorem: Completeness of d-separation
 - \square For "almost all" distributions that P factorize over to G, we have that I(G) = I(P)
- BN graph is usually sufficient to capture all independence properties of the distribution!!!!
- But only for complete independence:
 - $\square P \rightarrow (X=x\perp Y=y \mid Z=z), \forall x \in Val(X), y \in Val(Y), z \in Val(Z)$
- Often we have context-specific independence (CSI)
 - $\ \ \Box \ \exists \ x \in Val(X), \ y \in Val(Y), \ z \in Val(Z): P \rightarrow (X=x \perp Y=y \mid Z=z)$
 - □ Many factors may affect your grade
 - □ But if you are a frequentist, all other factors are irrelevant ☺

10-708 - ©Carlos Guestrin 2006-2008

Algorithm for d-separation

- - How do I check if X and Y are dseparated given Z
 - ☐ There can be exponentially-many trails between X and Y
- Two-pass linear time algorithm finds all d-separations for X
- 1. Upward pass
 - □ Mark descendants of Z
- 2. Breadth-first traversal from X
 - □ Stop traversal at a node if trail is "blocked"
 - □ (Some tricky details apply see reading)

C E E

37

What you need to know

- d-separation and independence
 - $\hfill \square$ sound procedure for finding independencies
 - □ existence of distributions with these independencies
 - □ (almost) all independencies can be read directly from graph without looking at CPTs

10-708 – ©Carlos Guestrin 2006-2008