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Why can we decompose? Local Markov Assc. 540,

A general Bayes net
" JEE

m Set of random variables X1--— X~
= Directed acyclic graph DAG C%/ fﬁ/
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= Joint distribution: pCxi X:)
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P(X1,.., Xn) =[] P(XZ- | PaXi)
i=1
m Local Markov Assumption:

A variable X is independent of its non-descendants given its
parents and only its parents — (Xi L NonDescendantsXi | P.':!Xi)6




Questions????
“ JEE
( m What distributions can be represente a BN?

m What BNs can represent a distribution?

-

m What are the independence assumptions
encoded in a BN?
in addition to the local Markov assumption
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Independencies in Problem
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World, Data, reality: BN:
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encodes local
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Today: The Representation Theorem —

True Indeﬁendencieg to BN Factorization
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Today: The Representation Theorem —

BN Factorization to True Independencies
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Let’s start proving it for naive Bayes —

i} From True Indeﬁendencies to BN Factorization

m Independence assumptions: f\
X; independent given C X, - X
m Let's assume that P satisfies independencies must
prove that P factorizes according to BN:
P(C,Xy,....X,) = P(C) IT, P(X|C)
m Use chain rule!
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Let’s start proving it for naive Bayes —
] From BN Factorization to True Independencies
ol

m Let's assume that P factorizes acc{c\gkrgjr}g}o the BN:
P(C,X{,....X,)) =P(C) IT. P(X|C) <= e C
m Prove the independence assumptlonsjfmv\)(g/ N

X; independent given C /__{“\’
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Today: The Representation Theorem

Encodes independence
assumptions

in BN are subset of
conditional
mdependenues i
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 Xp) = ﬁ P(X;|Pay,)
i=1

P(Xq,...

If joint probability
distribution:

mn
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independencies

in BN are subset of
conditional
|ndependen0|es inP
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Local Markov assumption & I-maps

" JE
m Local independence
assumptions in BN

structure G: 7, ((-)

m Independence
assertions of P:
TP
m BN structure G is an

I-m ap (independence
map) if:

=

TdOc I(P)
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Local Markov Assumption:
A variable X is independent
of its non-descendants given

its parents and only its parents
(Xi L NonDescendantsy; | Pay;)




Factorized distributions
"

m Given )
Random vars X,...,X, >\ /‘ -
P distribution over vars
BN structure G over same vars

m P factorizes according to G if

—

n
P(X1,.. -, Xn) = [] P(XZ- | PaXZ.)
=1

BN Representation Theorem —

. ofnap to factorization
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_If conditional Joint probabiﬁ’ty
independencies distribution:
in BN are subset of .
conditional

n
independencies in P P(X1,...,Xn) = J];IIP(‘\’:' | Pay,)

P factorizes

Gis an I-map of P according to G
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BN Representation Theorem —

. gamap to factorization: Proof, part 1

P factorizes
according to G

P(X1,....Xp) = [[ P(X:|Pay)
i=1

Gisan
I-map of P

Topological Ordering:

= Number variables such that: [

parent has lower number than child
— —_— -
e, X — X = i< 3

Key: varlable has lower number than

all of its— = - — -
I LScandends q

m DAGs always have (many) topological ‘

hok

orderings
find by a modification of breadth first
e =
search

BN Representation Theorem —

- ofnap to factorization: Proof, part 2

Gis an P factorizes
I-map of P . according to G
L Stutestth & hps ‘07\ 6 MInY P(X1,...,Xn) = [ P(X:| Pay,)
w6 Ay ¥Xn =

ALL YOU NEED;

- Chegn rule Local Markov A i
ocal Markov Assumption:
A, X 2 PO PC?(L\{J(:’/ {C A variable X is independent

of its non-descendants given its parents
g_// and only its parents
P (L Uw--%i*l) (Xi L NonDescendantsX | Pax
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_ rhmede ™t Fon,
Defining a BN / Acch
“ JEE

m Given a set of variables and conditional independence assertions of P

Xq - {r\
m Choose an orderin% on variables, e.g., X, ..., X, c A
N
m Fori=1lton S
Add X; to the network / NM
—

Define parents of X;, PaX in graph as the minimal subset of {X;,....Xi1}
such that local Markov assumptlon holds — X; independent of o—m
{X4,.... X1}, given parents Pay;

Define/learn CPT — P(X| Pa,;)
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Adding edges doesn’t hurt 517
" JE
m Theorem: Let G be an I-map for P, any DAG G’ that includes
the same directed edges as G is also an I-map for P.

Corollary 1: Q is strictly more expressive than G’_
Corollary 2: If G is an I-map for P, then adding edges still an I-map

m Proof:

T cT®) D Te() <T@
T6)2 Tele) @

‘.
in & PO L) TR0k Pas) /’
R}J“L G'A'jL c/ !

o) 6 e TS

L
P AL = ms A=
= V W) = ?(H\SM@ um@ .




Announcements

*

m Homework 1:
Out today
Due in 2 weeks — beginning of class!
It's hard — start early, ask questions

m Collaboration policy
OK to discuss in groups
Tell us on your paper who you talked with
Each person must write their own unique paper

No searching the web, papers, etc. for answers, we trust you
[ T
want to learn

m Audit policy
No sitting in, official auditors only, see course website
= Recitation tomorrow 7?

Wean 5409, 5pm
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BN Representation Theorem —
Factorization to I-map

1 Q beripg cc °'”"I'l)4\'b'\) Then conditional
If joint probability independencies
distribution: in BN are subset of
N conditional
P(Xq1,....Xn) =] p(xi | an;) indspendencies in P
= Te6) < T¢p)

P factorizes
according to G

Gis an |I-map of P




BN Representation Theorem —

Factorization to I-map: Proof
" SN

Then conditional

If joint probability independencies
distribution: in BN are subset of
. conditional

P(Xq,...,Xn) =[] p(‘\—i | an;) independencies in P
i=1

P factorizes

according to G G is an I-map of P

Homework 1! ©
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The BN Representation Theorem

]
-t —.M'. AD QL‘FI)’(‘%A()V:
_If conditional Joint probability
independencies distribution:
in BN are subset of '
conditional A ke .
independencies in P P(X1,- 0 Xn) = ,-Elp(‘\i |Pax)
Important because: W Lot Sj~plest
Every P has at least one BN structure G
.&d‘]ﬁyj - Thenjc%%itional
If joint propablllty independencies
distribution: in BN are subset of
conditional

0
f’()(l._ S .Xu) = 1_[ r (-Xr' | Pa.‘.’,)
i=1

i

independencies in P

Important because:
Read independencies of P from BN structure G




What you need to know thus far
“ JEE
m Independence & conditional independence
m Definition of a BN
——
m Local Markov assumption

m The representation theorems

Statement: G is an I-map for P if and only if P
factorizes according to G

Interpretation
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Independencies encoded in BN
" JE
m We said: All you need is the local Markov
assumption
(X; L NonDescendants,; | Pay;)

m But then we talked about other (in)dependencies

e.g., explaining away A B kLB
haB2CSD Vo 4 pBIC
ANiD[B =

m What are the independencies encoded by a BN?
Only assumption is local Markov

But many others can be derived using the algebra of
conditional independencies!!!




Understanding independencies in BNs

— BNs with 3 nodes
" S

Indirect causal effect: \/ /LX I,%
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Indirect evidential effect:

-0 M
7 XY

.

v
7Y

all

Common cause:

ORo

Local Markov Assumption:
A variable X is independent

of its non-descendants given
its parents and only its parents
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