

A general Bayes net

- Set of random variables X₁ --- ×_n
- Directed acyclic graph DAG

 Loops OK

 but no directed cycles

 No! = $X_1 \in Y_3$ No! = $X_1 \in Y_3$ | CPTs

 | with each X_1 conditional Probability table

 | Dint distribution: $P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | Pa_{X_i})$

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

- Local Markov Assumption:
 - □ A variable X is independent of its non-descendants given its parents and only its parents - (Xi \(\text{NonDescendantsXi} \) | PaXi)

Questions????

- What distributions can be represented by a BN?
 - What BNs can represent a distribution?
 - What are the independence assumptions encoded in a BN?
 - □ in addition to the local Markov assumption

A-B-C-D derived independencies

ALD B

ALCIB

ABLDIC

ABLDIC

Let's start proving it for naïve Bayes – From True Independencies to BN Factorization

☐ X_i independent given C

- $\Box P(C,X_1,...,X_n) = P(C) \prod_i P(X_i|C)$
- Use chain rule!

$$P(X_i \mid C \dots \mid X_i \dots \mid X_{i-1}) = P(X_i \mid C)$$

10-708 - Carlos Guestrin 2006-200

Let's start proving it for naïve Bayes — From BN Factorization to True Independencies

Let's assume that P factorizes according to the BN: $P(C,X_1,...,X_n) = P(C) \prod_i P(X_i|C)$ Prove the independence assumptions: $X_i \text{ independent given } C$ $X_i \text{ independent given } C$

Factorized distributions

- Given
 - \square Random vars $X_1,...,X_n$
 - □ P distribution over vars
 - □ BN structure G over same vars
 - P factorizes according to G if

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Flu Allergy Sinus Nose Headache

BN Representation Theorem -I-map to factorization

Obtain

if BN is IMAP

If conditional independencies in BN are subset of conditional independencies in P

P factorizes according Joint probability

distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

G is an I-map of P

Ie(G) & I(P)

P factorizes according to G

Defining a BN

- Choose an ordering on variables, e.g., $X_1, ..., X_n$
- For i = 1 to n
 - □ Add X_i to the network

□ Define/learn CPT – P(X_i| Pa_{Xi})

10

Announcements

- Homework 1:
 - □ Out today
 - □ Due in 2 weeks **beginning of class!**
 - ☐ It's hard start early, ask questions
 - Collaboration policy
 - □ OK to discuss in groups
 - □ Tell us on your paper who you talked with
 - ☐ Each person must write their **own unique paper**
 - □ No searching the web, papers, etc. for answers, we trust you want to learn
 - Audit policy
 - □ No sitting in, official auditors only, see course website
 - Recitation tomorrow
 - □ Wean 5409, 5pm

arlos Guestrin 2006-2008

21

BN Representation Theorem – Factorization to I-map

It P factorizes acclording to BN

If joint probability

distribution:

Obtain

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathsf{Pa}_{X_i}\right)$

P factorizes according to G

Then conditional independencies in BN are subset of conditional independencies in P

G is an I-map of P

10-708 - Carlos Guestrin 2006-2008

22

BN Representation Theorem -Factorization to I-map: Proof

If joint probability distribution:

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$ P factorizes

according to G

G is an I-map of P

Homework 1!!!! ©

The BN Representation Theorem

If conditional independencies in BN are subset of conditional independencies in P

Obtain

Enchritation Joint probability distribution:

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$

Important because:

we want simplest

Every P has at least one BN structure G

trchrizes

If joint probability distribution:

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$ Important because:

Read independencies of P from BN structure G

What you need to know thus far

- Independence & conditional independence
- Definition of a BN
- Local Markov assumption
- The representation theorems
 - □ Statement: G is an I-map for P if and only if P factorizes according to G
 - Interpretation

10-708 - Carlos Guestrin 2006-200

Independencies encoded in BN

- We said: All you need is the local Markov assumption
 - \square ($X_i \perp NonDescendants_{Xi} \mid \mathbf{Pa}_{Xi}$)
- But then we talked about other (in)dependencies
 - □ e.g., explaining away

- What are the independencies encoded by a BN?
 - □ Only assumption is local Markov
 - □ But many others can be derived using the algebra of conditional independencies!!!

10-708 - Carlos Guestrin 2006-2008

26

