

What if variables are independent?

- What if variables are independent?
 - \square ($X_i \perp X_i$), $\forall i,j$
 - □ Not enough!!! (See homework 1 ⁽²⁾)
 - \square Must assume that (**X** \perp **Y**), \forall **X,Y** subsets of $\{X_1, ..., X_n\}$

$$\begin{array}{c} \times_1 \times_3 \perp \times_7 \times_{14} \end{array}$$

Can write

two nodes

How many independent parameters now? n.(k-1)

Conditional parameterization –

Grade is determined by Intelligence

The naïve Bayes model – Your first real Bayes Net

- Class variable: C
- Evidence variables: X₁,...,X_n
- assume that $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{C})$, $\forall \mathbf{X},\mathbf{Y}$ subsets of $\{X_1,...,X_n\}$

10-708 - @Carlos Guestrin 2006-2008

What you need to know (From last class)

- Basic definitions of probabilities
- Independence
- Conditional independence
- The chain rule
- Bayes rule
- Naïve Bayes

10-708 - @Carlos Guestrin 2006-2008

.

This class

- We've heard of Bayes nets, we've played with Bayes nets, we've even used them in your research
- This class, we'll learn the semantics of BNs, relate them to independence assumptions encoded by the graph

10-708 - ©Carlos Guestrin 2006-2008

8__

Causal structure Suppose we know the following: The flu causes sinus inflammation Allergies cause sinus inflammation Sinus inflammation causes a runny nose Sinus inflammation causes headaches How are these connected?

(Marginal) Independence

■ Flu and Allergy are (marginally) independent

More Generally:		

Flu = t
Flu = f

Allergy = t

Allergy = f

	Flu = t	Flu = f
Allergy = t		
Allergy = f		

10-708 - @Carlos Guestrin 2006-2008

15

Conditional independence

- Flu and Headache are not (marginally) independent
- Flu and Headache are independent given Sinus infection
- More Generally:

0-708 - ©Carlos Guestrin 2006-200

A general Bayes net

- Set of random variables
- Directed acyclic graph
- CPTs
- Joint distribution:

distribution:
$$P(X_1, \dots, X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$$

- Local Markov Assumption:
 - □ A variable X is independent of its non-descendants given its parents and only its parents – (Xi ⊥ NonDescendantsXi | PaXi)

10-708 - @Carlos Guestrin 2006-2008

21

Announcements

- Homework 1:
 - Out wednesday
 - □ Due in 2 weeks **beginning of class!**
 - ☐ It's hard start early, ask questions
- Collaboration policy
 - □ OK to discuss in groups
 - ☐ Tell us on your paper who you talked with
 - ☐ Each person must write their **own unique paper**
 - □ No searching the web, papers, etc. for answers, we trust you want to learn
- Audit policy
 - □ No sitting in, official auditors only, see couse website
- Don't forget to register to the mailing list at:
 - □ https://mailman.srv.cs.cmu.edu/mailman/listinfo/10708-announce

10-708 - @Carlos Guestrin 2006-2008

Questions????

- What distributions can be represented by a BN?
- What BNs can represent a distribution?
- What are the independence assumptions encoded in a BN?
 - □ in addition to the local Markov assumption

10-708 - @Carlos Guestrin 2006-2008

23

Today: The Representation Theorem – Joint Distribution to BN

BN:

Encodes independence assumptions

If conditional independencies in BN are subset of conditional independencies in P

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

10-708 – ©Carlos Guestrin 2006-2008

Today: The Representation Theorem – BN to Joint Distribution

BN:

Encodes independence assumptions

If joint probability distribution:

Then conditional independencies in BN are subset of conditional independencies in P

10-708 - @Carlos Guestrin 2006-2008

25

Let's start proving it for naïve Bayes - From joint distribution to BN

- Independence assumptions:
 - $\square X_i$ independent given C
- Let's assume that *P* satisfies independencies must prove that *P* factorizes according to BN:
 - $\square P(C,X_1,...,X_n) = P(C) \prod_i P(X_i|C)$
- Use chain rule!

10-708 – @Carlos Guestrin 2006-2008

Let's start proving it for naïve Bayes - From BN to joint distribution

- Let's assume that P factorizes according to the BN:
 - \square P(C,X₁,...,X_n) = P(C) \prod_i P(X_i|C)
- Prove the independence assumptions:
 - □ X_i independent given C
 - \square Actually, (**X** \perp **Y** | C), \forall **X**,**Y** subsets of {X₁,...,X_n}

10-708 - @Carlos Guestrin 2006-200

Local Markov assumption & I-maps

- Local independence assumptions in BN structure G:
- Independence assertions of P:
- BN structure G is an *I-map* (independence map) if:

Local Markov Assumption:

A variable X is independent of its non-descendants given its parents and only its parents (Xi \(\times\) NonDescendants_{Xi} | Pa_{Xi})

10-708 - @Carlos Guestrin 2006-2008

29

Factorized distributions

- - Given
 - \square Random vars $X_1,...,X_n$
 - ☐ P distribution over vars
 - □ BN structure G over same vars
 - P factorizes according to G if

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

10-708 – @Carlos Guestrin 2006-2008

Defining a BN

- Given a set of variables and conditional independence assertions of P
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n
 - □ Add X_i to the network
 - □ Define parents of X_i , \mathbf{Pa}_{X_i} , in graph as the minimal subset of $\{X_1, ..., X_{i-1}\}$ such that local Markov assumption holds $-X_i$ independent of rest of $\{X_1, ..., X_{i-1}\}$, given parents \mathbf{Pa}_{X_i}
 - \square Define/learn CPT P(X_i| \mathbf{Pa}_{X_i})

10-708 - @Carlos Guestrin 2006-2008

33

BN Representation Theorem – Factorization to I-map

If joint probability distribution:

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

 $P(X_1,...,X_n) = \prod_{i=1}^n P(X_i | \mathbf{Pa}_{X_i})$ **P** factorizes

according to G

G is an I-map of P

10.708 - @Carlos Guestrin 2006.200

BN Representation Theorem – Factorization to I-map: **Proof**

If joint probability distribution:

Obtain $P(X_1,\ldots,X_n)=\prod_{i=1}^n P\left(X_i\mid \mathsf{Pa}_{X_i}\right)$

Then conditional independencies in BN are subset of conditional independencies in P

P factorizes according to G

G is an I-map of P

Homework 1!!!! ©

10-708 - @Carlos Guestrin 2006-2008

35

The BN Representation Theorem

If conditional independencies in BN are subset of conditional independencies in P

Obtain

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Important because:

Every P has at least one BN structure G

If joint probability distribution:

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

 $P(X_1,...,X_n) = \prod_{i=1}^n P(X_i | \mathbf{Pa}_{X_i})$ Important because:

Read independencies of P from BN structure G

Acknowledgements

- JavaBayes applet
 - □ http://www.pmr.poli.usp.br/ltd/Software/javabayes/ Home/index.html

10-708 - @Carlos Guestrin 2006-2008