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Learning P-maps 
Param. Learning 

Graphical Models – 10708 
Carlos Guestrin 
Carnegie Mellon University 

September 24th, 2008 

Readings: 
 K&F: 3.3, 3.4, 16.1, 16.2, 16.3, 16.4 
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Perfect maps (P-maps) 

  I-maps are not unique and often not simple
 enough 

  Define “simplest” G that is I-map for P 
 A BN structure G is a perfect map for a distribution P

 if I(P) = I(G)   

  Our goal: 
 Find a perfect map! 
 Must address equivalent BNs 
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Inexistence of P-maps 1 

  XOR (this is a hint for the homework) 
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Obtaining a P-map 

  Given the independence assertions that are true
 for P 

  Assume that there exists a perfect map G* 

 Want to find G* 

  Many structures may encode same
 independencies as G*, when are we done? 
 Find all equivalent structures simultaneously! 
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I-Equivalence 

  Two graphs G1 and G2 are I-equivalent if I(G1) = I(G2) 
  Equivalence class of BN structures 

 Mutually-exclusive and exhaustive partition of graphs 

  How do we characterize these equivalence classes?  
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Skeleton of a BN 

  Skeleton of a BN structure G is
 an undirected graph over the
 same variables that has an
 edge X–Y for every X!Y or
 Y!X in G 

  (Little) Lemma: Two I
-equivalent BN structures must
 have the same skeleton 
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What about V-structures? 

  V-structures are key property of BN
 structure 

  Theorem: If G1 and G2 have the same
 skeleton and V-structures, then G1 and
 G2 are I-equivalent 
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Same V-structures not necessary 

  Theorem: If G1 and G2 have the same skeleton and
 V-structures, then G1 and G2 are I-equivalent 

  Though sufficient, same V-structures not necessary 
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Immoralities & I-Equivalence 

  Key concept not V-structures, but
 “immoralities” (unmarried parents ) 
 X ! Z ← Y, with no arrow between X and Y 
  Important pattern: X and Y independent given their

 parents, but not given Z 
  (If edge exists between X and Y, we have covered the

 V-structure) 
  Theorem: G1 and G2 have the same skeleton

 and immoralities if and only if G1 and G2 are     
 I-equivalent 
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Obtaining a P-map 

  Given the independence assertions that are true
 for P 
 Obtain skeleton 
 Obtain immoralities 

  From skeleton and immoralities, obtain every
 (and any) BN structure from the equivalence
 class 
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Identifying the skeleton 1 

  When is there an edge between X and Y? 

  When is there no edge between X and Y? 
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Identifying the skeleton 2 

  Assume d is max number of parents (d could be n) 

  For each Xi and Xj 
 Eij ← true 
 For each U⊆ X – {Xi,Xj}, |U|≤d 

  Is (Xi ⊥ Xj | U) ? 
  Eij ← false 

  If Eij is true 
  Add edge X – Y to skeleton 
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Identifying immoralities 

  Consider X – Z – Y in skeleton, when should it be
 an immorality? 

  Must be X ! Z ← Y (immorality): 
 When X and Y are never independent given U, if Z2U 

  Must not be X ! Z ← Y (not immorality): 
 When there exists U with Z2U, such that X and Y are

 independent given U 
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From immoralities and skeleton to
 BN structures 

  Representing BN equivalence class as a
 partially-directed acyclic graph (PDAG) 

  Immoralities force direction on some other BN
 edges 

  Full (polynomial-time) procedure described in
 reading 
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What you need to know 

  Minimal I-map  
 every P has one, but usually many 

  Perfect map 
 better choice for BN structure 
 not every P has one 
 can find one (if it exists) by considering I-equivalence 
 Two structures are I-equivalent if they have same

 skeleton and immoralities 

Announcements 
  Recitation tomorrow 

  Don’t miss it! 

  No class on Monday  
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Review 

  Bayesian Networks  
 Compact representation for

 probability distributions 
 Exponential reduction in

 number of parameters 
 Exploits independencies  

  Next – Learn BNs 
 parameters 
 structure 

Flu Allergy 

Sinus 

Headache Nose 
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Thumbtack – Binomial Distribution 

  P(Heads) = θ,  P(Tails) = 1-θ


  Flips are i.i.d.: 
  Independent events 
  Identically distributed according to Binomial

 distribution 
  Sequence D of αH Heads and αT Tails   
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Maximum Likelihood Estimation 

  Data: Observed set D of αH Heads and αT Tails   
  Hypothesis: Binomial distribution  
  Learning θ is an optimization problem 

 What’s the objective function? 

  MLE: Choose θ that maximizes the probability of
 observed data: 
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Your first learning algorithm 

  Set derivative to zero: 
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Learning Bayes nets 
Known structure Unknown structure 

Fully observable 
data 
Missing data 

x(1) 
… 

 x(m) 

Data 

structure parameters 

CPTs –  
P(Xi| PaXi) 
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Learning the CPTs 

x(1) 
… 

 x(m) 

Data 
For each discrete variable Xi 
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Learning the CPTs 

x(1) 
… 

 x(m) 

Data 
For each discrete variable Xi 

WHY?????????? 
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Maximum likelihood estimation (MLE) of
 BN parameters – example  
  Given structure, log likelihood of data: 

Flu Allergy 

Sinus 

Nose 
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Maximum likelihood estimation (MLE) of
 BN parameters – General case 
  Data: x(1),…,x(m) 
  Restriction: x(j)[PaXi] ! assignment to PaXi in x(j) 
  Given structure, log likelihood of data: 
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Taking derivatives of MLE of BN
 parameters – General case 
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General MLE for a CPT 
  Take a CPT: P(X|U) 
  Log likelihood term for this CPT 

  Parameter θX=x|U=u : 
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m 

Can we really trust MLE? 

  What is better? 
  3 heads, 2 tails 

  30 heads, 20 tails 

  3x1023 heads, 2x1023 tails 

  Many possible answers, we need distributions over possible
 parameters 
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Bayesian Learning 

  Use Bayes rule: 

  Or equivalently: 
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Bayesian Learning for Thumbtack 

  Likelihood function is simply Binomial: 

  What about prior? 
  Represent expert knowledge 
  Simple posterior form 

  Conjugate priors: 
  Closed-form representation of posterior (more details soon) 
  For Binomial, conjugate prior is Beta distribution 
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Beta prior distribution – P(θ) 

  Likelihood function: 
  Posterior: 
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Posterior distribution 

  Prior: 
  Data: mH heads and mT tails 

  Posterior distribution:  
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Conjugate prior 

  Given likelihood function P(D|θ) 

  (Parametric) prior of the form P(θ|α) is conjugate to
 likelihood function if posterior is of the same parametric
 family, and can be written as:  
  P(θ|α’), for some new set of parameters α’ 

  Prior: 
  Data: mH heads and mT tails (binomial likelihood) 

  Posterior distribution:  
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Using Bayesian posterior 

  Posterior distribution:  

  Bayesian inference: 
  No longer single parameter: 

  Integral is often hard to compute 
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Bayesian prediction of a
 new coin flip 

  Prior:  
  Observed mH heads, mT tails, what is

 probability of m+1 flip is heads? 
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Asymptotic behavior and equivalent
 sample size 

  Beta prior equivalent to extra
 thumbtack flips: 
    

  As m → 1, prior is “forgotten” 
  But, for small sample size, prior

 is important! 
  Equivalent sample size: 

  Prior parameterized by αH,αT, or 
  m’ (equivalent sample size) and α

    

Fix m’, change α


Fix α, change m’ 
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Bayesian learning corresponds to
 smoothing 

  m=0 ) prior parameter 
  m!1 ) MLE  

m 
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Bayesian learning for multinomial 

  What if you have a k sided coin??? 
  Likelihood function if multinomial: 

    
    

  Conjugate prior for multinomial is Dirichlet: 
    

  Observe m data points, mi from assignment i, posterior: 

  Prediction: 
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Bayesian learning for two-node BN 

  Parameters θX, θY|X 
  Priors: 

 P(θX): 
 P(θY|X): 
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Very important assumption on prior: 
Global parameter independence 

  Global parameter
 independence: 
 Prior over parameters is product

 of prior over CPTs 
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Global parameter independence,
 d-separation and local prediction 

Flu Allergy 

Sinus 

Headache Nose 

  Independencies in meta BN: 

  Proposition: For fully observable data
 D, if prior satisfies global parameter
 independence, then    
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Within a CPT 
  Meta BN including CPT parameters: 

  Are θY|X=t and θY|X=f d-separated given D? 
  Are θY|X=t and θY|X=f independent given D? 

  Context-specific independence!!! 
  Posterior decomposes: 
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Priors for BN CPTs  
(more when we talk about structure learning) 

  Consider each CPT: P(X|U=u) 
  Conjugate prior: 

 Dirichlet(αX=1|U=u,…, αX=k|U=u) 
  More intuitive: 

  “prior data set” D’ with m’ equivalent sample size 
  “prior counts”: 
 prediction: 
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An example 
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What you need to know about
 parameter learning 

  MLE: 
 score decomposes according to CPTs 
 optimize each CPT separately 

  Bayesian parameter learning: 
 motivation for Bayesian approach 
 Bayesian prediction 
 conjugate priors, equivalent sample size 
 Bayesian learning ) smoothing  

  Bayesian learning for BN parameters 
 Global parameter independence 
 Decomposition of prediction according to CPTs 
 Decomposition within a CPT 


