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Pertect maps (P-maps)
" JEE
m |-maps are not unique and often not simple
en_cLugh

m Define “simplest” G that is |-map for P

A BN structure G is a perfect map for a distribution P
if I(P) = I(G) —

m Our goal:
Find a perfect map!

Must address equivalent BNs
//__j




Inexistence of P-maps 1
“
m XOR (this is a hint for the homework)
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Obtaining a P-map
= S
m Given the independence assertions that are true

for P .
forP

—

m Assume that there exists a perfect map G

Want to find G”

- —
—

Many structures may encode same
independencies as G*, when are we done?
Find all equivalent structures simultaneously!




|-Equivalence
" J
m Two graphs G, and G, are l-equivalent if [(G,) = (G,)
m Equivalence class of BN structures
Mutually-exclusive and exhaustive partition of graphs

m How do we characterize these equivalence classes?

Skeleton of a BN
= JEE
m Skeleton of a BN structure G is
an undirected graph over the
same variables that has an

edge X-Y for every X—Y or
Y—Xin G

m (Little) Lemma: Two |
-equivalent BN structures must
have the same skeleton




What about V-structures? ®
* JEE
m V-structures are key property of BN
structure

m Theorem: If G, and G, have the same
skeleton and V-structures, then G, and
G, are |-equivalent

Same V-structures not necessary

" JEE

m Theorem: If G, and G, have the same skeleton and
V-structures, then G, and G, are l-equivalent

m Though sufficient, same V-structures not necessary




Immoralities & |-Equivalence
" JE
m Key concept not V-structures, but
“immoralities” (unmarried parents ©)
X — Z <Y, with no arrow between X and Y

Important pattern: X and Y independent given their
parents, but not given Z

(If edge exists between X and Y, we have covered the
V-structure)
m Theorem: G, and G, have the same skeleton
and immoralities if and only if G, and G, are
l-equivalent

Obtaining a P-map
* JEE
m Given the independence assertions that are true
for P
Obtain skeleton
Obtain immoralities

m From skeleton and immoralities, obtain every
(and any) BN structure from the equivalence
class
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|ldentifying the skeleton 1
* JEE—

m When is there an edge between X and Y?

m When is there no edge between X and Y?
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|ldentifying the skeleton 2
* JEE

m Assume d is max number of parents (d could be n)

m For each X; and X|
E; < true
For each UC X — {X;, X}, |U|=d
mls (X, LX|U)?
E; < false
If E; is true
= Add edge X —Y to skeleton

12




|ldentifying immoralities

" JE

m Consider X —Z - Y in skeleton, when should it be
an immorality?

m Must be X — Z <= Y (immorality):
When X and Y are never independent given U, if ZcU

m Must not be X — Z <— Y (not immorality):

When there exists U with Z€U, such that X and Y are
independent given U
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From immoralities and skeleton to

. BN structures

m Representing BN equivalence class as a
partially-directed acyclic graph (PDAG)

m Immoralities force direction on some other BN
edges

m Full (polynomial-time) procedure described in
reading

14




What you need to know
“

m Minimal I-map
every P has one, but usually many

m Perfect map
better choice for BN structure
not every P has one
can find one (if it exists) by considering I-equivalence

Two structures are I-equivalent if they have same
skeleton and immoralities
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Announcements
= JEEE

m Recitation tomorrow
Don’t miss it!

m No class on Monday ®
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Review
" B

m Bayesian Networks
Compact representation for @
probability distributions
Exponential reduction in
number of parameters

Exploits independencies

m Next — Learn BNs
parameters
structure
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Thumbtack — Binomial Distribution
" JEEE
m P(Heads) =6, P(Tails) =1-6

m Flips are i.i.d.:
Independent events

Identically distributed according to Binomial
distribution

m Sequence D of oy Heads and a5 Tails

P(D|§) = 0%H(1 — §)°T
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Maximum Likelihood Estimation
" JEE—

m Data: Observed set D of oy Heads and o Tails

m Hypothesis: Binomial distribution

m Learning 6 is an optimization problem
What’s the objective function?

m MLE: Choose 0 that maximizes the probability of
observed data:

~

0 = arg meax P(D|0)
= arg m@ax In P(D | 0)

19

Your first learning algorithm

“ JE
6 = argm@ax In P(D | 6)

= argm@ax In6*H (1 — 6)T

= Set derivative to zero: |4 InP(D|0) =0
df

20
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Learning Bayes nets
" JE 0000 0

Known structure Unknown structure

Fully observable

data
CPTs -
I P(Xi| Pay;)

Missing data
structure parameters

21

Learning the CPTs
"

@ N\ For each discrete variable X;

Count(Xi = :Ci,Xj = ac])
COUﬂt(Xj = 1']')
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/ MLE: P(Xi=93i|Xj:$j):

11



Learning the CPTs
" S

@ A For each discrete variable X;

Count(X; = z;, Xj = x;)

MLE: P(X;=uz;|X;=2;) = Count(X; = z)
J= %

> WHY?222222222?

Maximum likelihood estimation (MLE) of

_ <
BN parameters — example <D\

m Given structure, log likelihood of data:
log P(D | 0g,9)

24
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Maximum likelihood estimation (MLE) of
BN parameters — General case
m Data: x("),... x(m

m Restriction: x0[Pa,,] — assignment to Pa,; in x0)
m Given structure, log likelihood of data:

log P(D | 6g,G)

Taking derivatives of MLE of BN

i} Earameters — General case

m n . .
log P(D | 6g,6) = . 3 log P (Xi =) | Pay, = x() [PaXiD
j=1li=1

13



General MLE for a CPT

m Take a CPT: P(X|U)
m Log likelihood term for this CPT

m Parameter 6y_,y-,

Count(X =z,U =u)
MLE: PX=2U=w=0x=ru=u= Count(U = u)
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Can we really trust MLE?

m What is better?
3 heads, 2 tails

H : 5 10 15 20 25 30 35 40 45 50
30 heads, 20 tails |
T
3x1023 heads, 2x1023 tails m

m Many possible answers, we need distributions over possible
parameters
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Bayesian Learning
* JEE
m Use Bayes rule:
po1D) = DIOPO

m Or equivalently:
PO | D) x P(D|0)P(0)
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Bayesian Learning for Thumbtack

" S
PO | D) x P(D|6)P()

m Likelihood function is simply Binomial:

P(D|6)=0"H(1—-06)"T

m What about prior?
Represent expert knowledge
Simple posterior form
m Conjugate priors:
Closed-form representation of posterior (more details soon)
For Binomial, conjugate prior is Beta distribution

30
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Beta prior distribution — P(0)
* JEE—

GOzH—l(l _ Q)aT—l

P(0) = ~ Beta(apy, ar)
B (aH ) aT)
Beta(1,1) . Beta(2,2) Beta(3,2) Beta(30,20)
14 5
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m Likelihood function: P(D|60) =60"H(1 —0)™T
m Posterior: P(0 | D) «x P(D|0)P(0)
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Posterior distribution
" JE—

m Prior: Beta(ay,ar)

m Data: my heads and my tails

m Posterior distribution:
P(6 | D) ~ Beta(myg + ag,mp + ar)

Beta(1,1) ) Beta(2.2) Beta(3.2) Bet(30.20)
15
08|
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05
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Conjugate prior
* JEE

m Prior Beta(ag, aT)
= Data: my heads and m; tails (binomial likelihood)
Posterior distribution:

P(0 | D) ~ Beta(my + o, mp + ar)

Given likelihood function P(D|0)

(Parametric) prior of the form P(6|a) is conjugate to
likelihood function if posterior is of the same parametric
family, and can be written as:

P(6]a’), for some new set of parameters o’
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Using Bayesian posterior ’ /
" S 1

m Posterior distribution: IO R
P(0 | D) ~ Beta(myg + ag, mp + ar)

m Bayesian inference:
No longer single parameter:

1
BlfO)] = [ F(O)P(© | D)df

Integral is often hard to compute
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Bayesian prediction of a

. S cOIn flig

m Prior:

m Observed my heads, m; tails, what is
probability of m+1 flip is heads?
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02 038

04 06
parameter value

mple size

m Beta prior equivalent to extra

thumbtack flips:
B[] = my + ag
myg +ag +mr+ ar

m As m — oo, prior is “forgotten”

Asymptotic behavior and equivalent

Fix m’, change a

m But, for small sample size, prior
is important!
m Equivalent sample size:
Prior parameterized by oy,o, or
m’ (equivalent sample size) and a
my + am’

Sl r——

20 80 100

40 60
M = #samples
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20 40 60 80 100
M = #samples
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Bayesian learning corresponds to

B imggthing

mH—i—am/
myg + mp + m/

E[0] =

5 10 15 20 25 30 35 40 45 50

m m=0 = prior parameter
® m—oo = MLE
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Bayesian learning for multinomial
" S

m What if you have a k sided coin???
m Likelihood function if multinomial:

m Conjugate prior for multinomial is Dirichlet:
6 ~ Dirichlet(ay, ..., o) ~ [[ 65"
i

m Observe m data points, m; from assignment i, posterior:

m Prediction:
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Bayesian learning for two-node BN
" S
m Parameters 0y, Oy x

m Priors:
P(0x):
I:’(e\qx):

Very important assumption on prior:

. (i‘lggal Rarameter independence

m Global parameter
independence:

Prior over parameters is product
of prior over CPTs

40
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Global parameter independence,

. adseparation and local prediction

m Independencies in meta BN:

m Proposition: For fully observable data @
D, if prior satisfies global parameter @ /.

independence, then
PO | D) =]]P(Ox,pay | D)
i :

41
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Within a CPT
" S

Meta BN including CPT parameters:

Are By~ and by, d-separated given D?
Are Oyx- and By x—; independent given D?

Context-specific independence!!!
Posterior decomposes:
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Priors for BN CPTs

imore when we talk about structure learning)

m Consider each CPT: P(X|U=u)

m Conjugate prior:

Dirichlet(ty-1y=y:- - » Cix=kju=u)

m More intuitive:

“prior data set” D’ with m’ equivalent sample size

“prior counts”:
prediction:

43
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An example

KL Divergence
2 8 & .

o
N

/

Bayes; M'=5

0
0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
# instances

44
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What you need to know about

. gRarameter Igarning

m MLE:
score decomposes according to CPTs
optimize each CPT separately

m Bayesian parameter learning:
motivation for Bayesian approach
Bayesian prediction
conjugate priors, equivalent sample size
Bayesian learning = smoothing

m Bayesian learning for BN parameters
Global parameter independence
Decomposition of prediction according to CPTs
Decomposition within a CPT
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