Variational Inference

Amr Ahmed

Nov. 6th 2008

Outline

- Approximate Inference
- Variational inference formulation
 - Mean Field
 - Examples
 - Structured VI
 - Examples

Approximate Inference

- Exact inference is exponential in clique size
- Posterior is highly peaked
 - Can be approximated by a simpler distribution
- Formulate inference as an optimization problem
 - Define an objective: how good is Q
 - Define a family of simpler distributions to search over
 - Find Q* that best approximate P

Approximate Inference

- Exact inference is exponential in clique size
- Posterior inference is highly peaked
 - Can be approximated by a simpler distribution
- Formulate inference as an optimization problem
 - Define an objective: how good is Q
 - Define a family of simpler distributions to search over
 - Find Q* that best approximate P
- Today we will cover variational Inference
 - Just a possible way of such a formulation
- There are many other ways
 - Variants of loopy BP (later in the semester)

What is Variational Inference?

VI Questions

- Which family to choose
 - Basically we want to remove some edges
 - Mean field: fully factorized
 - Structured : Keep tractable sub-graphs
- How to carry the optimization

$$Q^* = \min_{Q \in \mathcal{Q}} KL(Q||P)$$

- Assume P is a Markov network
 - Product of factors (that is all)

Outline

- Approximate Inference
- Variational inference formulation
 - Mean Field
 - Examples
 - Structured VI
 - Examples

Mean-field Variational Inference

D(q||p) for mean field – KL the reverse direction: cross-entropy term

• p:
$$T_i \varphi_i(c_i)$$
• q: $T_i \varphi_i(c_i)$
• q: $T_i Q_i(x_i)$

$$D(q||p) = \sum_{x} q(x) \log q(x) - \sum_{x} q(x) \log p(x)$$

$$\sum_{x} q(x) \log p(x) = \sum_{x} q(x) \log \sum_{x} T_i \varphi_i(c_i) = \sum_{x} q(x) \log p_i(c_i) - \sum_{x} q(x) \log p_i(c_i) - \sum_{x} q(x) \log p_i(c_i) = \sum_{x} q($$

$$P = \frac{1}{Z} \prod_{i} \phi_{i}(C_{i})$$

$P = \frac{1}{7} \prod \phi_i(C_i)$ The Energy Functional

$$Q = \prod_{j} q_{j}(x_{j})$$

- Theorem : $\ln Z = F[P_{\mathcal{F}}, Q] + D(Q||P_{\mathcal{F}})$ Maximize **Minimize**
- Where energy functional:

Our problem now is

$$Q^* = \underset{\sum_{x_i} Q(X_i)=1}{\text{Max}} F[P_F, Q]$$

Lower bound on InZ

$$\ln Z \leq F\left[P_F,Q\right] \quad \forall Q$$

Maximizing F[P,Q] tighten the bound And gives better prob. estimates

$$P = \frac{1}{Z} \prod_{i} \phi_{i}(C_{i})$$

$P = \frac{1}{7} \prod \phi_i(C_i)$ The Energy Functional

$$Q = \prod_{j} q_{j}(x_{j})$$

Our problem now is

$$F[P_{\mathcal{F}},Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X}) \stackrel{\text{Tractable}}{=} \operatorname{By \ construction}$$

$$Q^* = \underset{\sum_{x_i} Q(X_i)=1}{\text{Max}} F[P_F, Q]$$

 Theorem: Q is a stationary point of mean field approximation iff for each *j*:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

Outline

- Approximate Inference
- Variational inference formulation
 - Mean Field
 - Examples
 - Structured VI
 - Examples

$$Q_i(x_i) = rac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i]
ight\}$$

Q : fully factorized MN

$$X_1$$

$$X_2$$

$$X_3$$

$$X_4$$

$$X_5$$

$$\left(X_{6}\right)$$

$$X_9$$

$$X_{11}$$

$$Q(X) = \prod_{i} q_{i}(X_{i})$$

$$P(X) \propto \prod_{i,j \in E} \phi(X_i, X_j)$$

- Given the factors in P, we want to get the factors for Q.
- Iterative procedure. Fix all q_{-i} , compute q_i via the above equation
- Iterate until you reach a fixed point

$$Q_i(x_i) = rac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i]
ight\}$$

Q : fully factorized MN

P: Pairwise MN
$$P(X) \propto \prod_{i,j \in E} \phi(X_i, X_j)$$

$$X_4$$

$$X_5$$

$$X_6$$

$$X_7$$

$$\left(X_{12}\right)$$

$$q_i(x_i) \propto \exp \left\{ \sum_{\phi_i: X_i \in scope \ [\phi_i]} E_{Q(U_{\phi} - \{X_i\})} \left[\ln \phi_i(x_i, U_{\phi}) \right]_i \right\}$$

$$q_{i}(x_{1}) \propto \exp \left\{ \frac{E_{Q(\{X_{1},X_{2}\}-\{X_{i}\})}[\ln \phi(x_{1},x_{2})]+}{E_{Q(\{X_{1},X_{5}\}-\{X_{i}\})}[\ln \phi(x_{1},x_{5})]} \right\}$$

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

Q : fully factorized MN

$$X_1$$
 X_2 X_3 X_4

$$X_5$$
 X_6 X_7 X_8

$$X_9$$
 X_{10} X_{11} X_{12}

P: Pairwise MN
$$P(X) \propto \prod_{i \in F} \phi(X_i, X_j)$$

$$q_{i}(x_{i}) \propto \exp \left\{ \sum_{\phi_{i}:X_{i} \in scope \ [\phi_{i}]} E_{Q(U_{\phi} - \{X_{i}\})} \left[\ln \phi_{i}(x_{i}, U_{\phi}) \right]_{i} \right\}$$

$$q_{i}(x_{1}) \propto \exp \left\{ E_{q(X_{2})} \left[\ln \phi (x_{1}, x_{2}) \right] + E_{q(X_{5})} \left[\ln \phi (x_{1}, x_{5}) \right] \right\}$$

$$\propto \exp \left\{ \sum_{x_2} q_2(x_2) \ln \phi(x_1, x_2) + \sum_{x_5} q_5(x_5) \ln \phi(x_1, x_5) \right\}$$

$$Q_i(x_i) = rac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i]
ight\}$$

Q : fully factorized MN

$$X_2$$
 X_3 X_4

$$X_5$$
 X_6 X_7 X_8

$$X_9$$
 X_{10} X_{11} X_{12}

$$X_{8}$$
 X_{5}
 X_{6}
 X_{7}
 X_{8}
 X_{12}

P: Pairwise MN $P(X) \propto \prod \phi(X_i, X_j)$

 X_2

 X_3

$$q_i(x_i) \propto \exp \left\{ \sum_{\phi_i: X_i \in scope \ [\phi_i]} E_{Q(U_{\phi}^{-\{X_i\}})} \left[\ln \phi_i(x_i, U_{\phi}) \right]_i \right\}$$

In your homework

$$Q_i(x_i) = rac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i]
ight\}$$

Q : fully factorized MN

$$X_1$$
 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10} X_{11} X_{12}

P: Pairwise MN
$$P(X) = \prod_{i, j \in E} \phi(X_i, X_j)$$

Intuitively

- $-q(X_6)$ get to be tied with $q(x_i)$ for all xi that appear in a factor with it in P -i.e. fixed point equations are tied according to P
- What $q(x_6)$ gets is expectations under these $q(x_i)$ of how the factor looks like
- can be somehow interpreted as message passing as well (but we won't cover this)

$$q_i(x_i) \propto \exp \left\{ \sum_{\phi_i: X_i \in scope \ [\phi_i]} E_{Q(U_{\phi} - \{X_i\})} \left[\ln \phi_i(x_i, U_{\phi}) \right]_i \right\}$$

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$
 Example

Q : fully factorized MN

P: Pairwise MN
$$P(X) = \prod_{i \in F} \phi(X_i, X_j)$$

Intuitively

- $-q(X_6)$ get to be tied with $q(x_i)$ for all xi that appear in a factor with it in P -i.e. fixed point equations are tied according to P
- What $q(x_6)$ gets is expectations under these $q(x_i)$ of how the factor looks like
- can be somehow interpreted as message passing as well (but we won't cover this)

$$q_i(x_i) \propto \exp \left\{ \sum_{\phi_i: X_i \in scope \ [\phi_i]} E_{Q(U_{\phi} - \{X_i\})} \left[\ln \phi_i(x_i, U_{\phi}) \right]_i \right\}$$

Outline

- Approximate Inference
- Variational inference formulation
 - Mean Field
 - Examples
 - Structured VI
 - Examples
- Inference in LDA (time permits)

Structured Variational Inference

- Fully instantiated distribution Q*
- Enables exact Inference
 - Has low tree-width
 - You don't have to remove all edges
 - Just keep tractable sub graphs: trees, chain

Structured Variational Inference

Q: tractably factorized MN

P: Pairwise MN

Goal

Given factors in P, get factors in Q that minimize energy functional

$$F[P_{\mathcal{F}}, Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$$

Q: tractably factorized MN

P: Pairwise MN

$$\psi_j(\mathbf{c}_j) \propto \exp\left[\sum_{\phi \in A_j} E_Q\left[\ln \phi | \mathbf{c}_j\right] - \sum_{\psi_k \in B_j} E_Q\left[\ln \psi_k | \mathbf{c}_j\right]\right]$$

Factors that scope() is not independent of C_i in Q

Q: tractably factorized MN

What are the factors in Q that interact with x1,x5

P: Pairwise MN

$$X_1$$
 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10} X_{11} X_{12}

$$P(X) \propto \prod_{i,j \in E} \phi(X_i, X_j)$$

$$\psi_j(\mathbf{c}_j) \propto \exp\left[\sum_{\phi \in A_j} E_Q\left[\ln \phi | \mathbf{c}_j\right] - \sum_{\psi_k \in B_j} E_Q\left[\ln \psi_k | \mathbf{c}_j\right]\right]$$

Factors that scope() is not independent of C_j in Q

$$\psi_j(\mathbf{c}_j) \propto \exp\left[\sum_{\phi \in A_j} E_Q\left[\ln \phi | \mathbf{c}_j\right] - \sum_{\psi_k \in B_j} E_Q\left[\ln \psi_k | \mathbf{c}_j\right]\right]$$

Q: tractably factorized MN

What are the factors in P with scope not <u>separated</u> from x1,x5 in **Q**

$$P(X) \propto \prod_{i,j \in E} \phi(X_i, X_j)$$

- First, get variables that can not be separated form x_1 and x_5 in $\underline{\mathbf{Q}}$
- Second collect the factors they appear in in P

$$\psi_j(\mathbf{c}_j) \propto \exp\left[\sum_{\phi \in A_j} E_Q\left[\ln \phi | \mathbf{c}_j\right] - \sum_{\psi_k \in B_j} E_Q\left[\ln \psi_k | \mathbf{c}_j\right]\right]$$

 X_5

 X_9

Q: tractably factorized MN

What are the factors in P with scope not <u>separated</u> from x1,x5 in **Q**

 X_7

 X_8

 X_{12}

P: Pairwise MN

 X_6

$$P(X) \propto \prod_{i,j \in E} \phi(X_i, X_j)$$

- First, get variables that can not be separated form x_1 and x_5 in $\underline{\mathbf{Q}}$
- -Second collect the factors they appear in in P
- Expectation is taken over Q(scope[factor] | c_i)

$$\psi_j(\mathbf{c}_j) \propto \exp\left[\sum_{\phi \in A_j} E_Q\left[\ln \phi | \mathbf{c}_j\right] - \sum_{\psi_k \in B_j} E_Q\left[\ln \psi_k | \mathbf{c}_j\right]\right]$$

Q: tractably factorized MN

B =
$$\psi_{59}$$

$$A = \phi_{15} \phi_{59} \phi_{12} \phi_{56} \phi_{9,10}$$

$$\psi_j(\mathbf{c}_j) \propto \exp\left[\sum_{\phi \in A_j} E_Q\left[\ln \phi | \mathbf{c}_j\right] - \sum_{\psi_k \in B_j} E_Q\left[\ln \psi_k | \mathbf{c}_j\right]\right]$$

$$E_{Q} \left[\ln \phi \left(x_{5}, x_{9} \right) \mid x_{1}, x_{5} \right] = E_{Q(x_{9} \mid x_{1}, x_{5})} \left[\ln \phi \left(x_{5}, x_{9} \right) \right]$$

$$\psi_j(\mathbf{c}_j) \propto \exp\left[\sum_{\phi \in A_j} E_Q\left[\ln \phi | \mathbf{c}_j\right] - \sum_{\psi_k \in B_j} E_Q\left[\ln \psi_k | \mathbf{c}_j\right]\right]$$

Q: tractably factorized MN

$$A = \psi_{59}$$

$$B = \phi_{15} \, \phi_{59} \, \phi_{12} \, \phi_{56} \, \phi_{9,10}$$

$$\psi_j(\mathbf{c}_j) \propto \exp\left[\sum_{\phi \in A_j} E_Q\left[\ln \phi | \mathbf{c}_j\right] - \sum_{\psi_k \in B_j} E_Q\left[\ln \psi_k | \mathbf{c}_j\right]\right]$$

$$E_{Q}\left[\ln \psi_{5,9}(x_{5},x_{9}) \mid x_{1},x_{5}\right] = E_{Q(x_{9}\mid x_{1},x_{5})}\left[\ln \psi(x_{5},x_{9})\right]$$

$$\psi_j(\mathbf{c}_j) \propto \exp\left[\sum_{\phi \in A_j} E_Q\left[\ln \phi | \mathbf{c}_j\right] - \sum_{\psi_k \in B_j} E_Q\left[\ln \psi_k | \mathbf{c}_j\right]\right]$$

Q: tractably factorized MN

$$P(X) \propto \prod_{i,j \in E} \phi(X_i, X_j)$$

$$E_{Q}\left[\ln \phi_{9,10}(x_{9},x_{10}) | x_{1},x_{5}\right] = E_{Q(x_{9},x_{10}|x_{1},x_{5})}\left[\ln \phi_{9,10}(x_{9},x_{10})\right]$$

$$Q(x_9, x_{10} | x_1, x_5) = Q(x_9 | x_1, x_5)Q(x_{10})$$

$$\psi_j(\mathbf{c}_j) \propto \exp\left[\sum_{\phi \in A_j} E_Q\left[\ln \phi | \mathbf{c}_j\right] - \sum_{\psi_k \in B_j} E_Q\left[\ln \psi_k | \mathbf{c}_j\right]\right]$$

Some intuition

Q: tractably factorized MN

- -What have we picked from P when dealing with the first factor (X1,x5)?
 - -Factors that interact with (x1,x5) in both P and Q
 - Fixed point equations are tied in the same way these variables are tied in P and Q
- can be also interpreted as passing message over Q of expectations on these factors
- Q: how to compute these madrigals in Q efficiently? Homework!

Variational Inference in Practice

- Highly used
 - Fast and efficient
 - Approximation quality might be not that good
 - Always peaked answers (we are using the wrong KL)
 - Always captures modes of P
 - Spread of P is usually lost
 - Famous applications of VI
 - VI for topic models (LDA)
 - You can derive LDA equations in few lines using the fully factorized update equations (exercise)
 - We might go over it in a special recitations but try it if you are doing a project in topic models
 - Involved temporal models
 - Many more...