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Overview

« Parameter Learning
— Classical view, estimation task

— Estimators, properties of estimators
— MLE, why MLE?
— MLE in BNs, decomposability

» Structure Learning

— Structure score, decomposable scores
— TAN, Chow-Liu
— HW2 implementation steps



Note

* Plagiarism alert
— Some slides taken from others
— Credits/references at the end



Coin Toss

Data: D=(HTHHHTT ...

Parameters: 0 = Probability of heads

P(H|#) =0
P(T|6) =16

Goal: To infer # from the data and predict future outcomes P(H|D).



Clustering with Gaussian Mixtures
(Density Estimation)

Data: D = {x("} forn=1,...,N -:.;tift' o
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X E J.{ . '_."k .,
IR ol
Lt R
Parameters: 6 = (M, =M) ... (™, Z0),7) - - _:@f'.:

Model:

m

OB Z mi pi(x™)
i=1

where | |
pilx™) = N (19, 50)

Goal: To infer 8 from the data and predict the density p(x|D. m)



Parameter Learning

 (Classical statistics view / Point Estimation
— Parameters unknown but not random
— Point estimation = “find the right parameter”

— Estimate parameters (or functions of parameters) of the
model from data

 Estimators
— Any statistic
— Function of data alone

« Say you have a dataset D = {x\™}
— Need to estimate mean
— Is ,[1 = 5, an estimator?
— What would you do?



Properties of estimator

Since estimator gives rise an estimate that depends on sample
points (x1,x2,,,xn) estimate is a function of sample points.

Sample points are random variable therefore estimate is random
variable and has probability distribution.

We want that estimator to have several desirable properties like
« Consistency
 Unbiasedness
*  Minimum variance

In general it is not possible for an estimator to have all these
properties.



A General MLE strategy

Suppose 6 = (6, 6, ..., 8,)" is a vector of parameters.
Task: Find MLE 6 assuming known form for p(Data| 6,stuff)
1. Write LL = log P(Data| 6,stuff)

2.  Work out 6LL/86 using high-school calculus

3. Solve the set of simultaneous equations
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The MLE u
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Unbiased Estimators

An estimator of a parameter is unbiased if the
expected value of the estimate is the same as the
true value of the parameters.

Ifx;, x,, ... Xy ~(i.i.d) N(pu,c2) then
nle —Fl — -
A= 3 -

we is unbiased



Biased Estimators

e An estimator of a parameter is biased if the
expected value of the estimate is different from
the true value of the parameters.

o If X, X5 ... Xp ~(i.i.d) N(u,c2) then

R
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So why MLE?

« MLE has some nice properties
— MLEs are often simple and easy to compute.

— MLEs have asymptotic optimality properties (consistency
and efficiency).

— MLEs are invariant under reparameterization.
— and more..



Let's try

5 [10 pts] ML and MAP Estimation

Recall the probability mass function for a Poisson distribution:

6% e?
p(lf) = —

5.1 [2 pts]

Derive the maximum likelihood estimate of 6.

5.2 [4 pts]

Prove that the maximum likelihood estimate 1s invariant to any 1 —1 reparameterization of 6.
That is, given an invertible function f(px) = € which yields the reparametrized distribution
p(z|f(p)) = p(x|f), prove that the maximum likelihood estimates of 1 and @ satisty,

() =96



Back to BNs

« MLE in BN
— Data
— Model DAG G
— Parameters CPTs
— Learn parameters from data

Q-0

e (:) CPTs —
O O I P(Xi| Pay)
\x@/ structure parameters




Learning the CPTs

A For each discrete variable X,  fay; = O
PL:10)

x(1) PO(\ } PG\)(‘} =

i,w
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COUﬂt(XZ' = ZBZ',X]' = CBJ>

-708 — rlos

MLE: P(XZ=$Z|X]:;UJ):
Guestrin 2006-29(/8 Count(X; = x;)



Example

* Learning MLE parameters



Learning the CPTs

A For each discrete variable X,  fay; = O
PL:10)

x(1) PO(‘\ } PG\)(‘} =
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Maximuym likelihood estimation (MLE) of
2 D
BN parameters — example. f»

 Given structure, log Iikelihood of data: R |
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Decomposability

« Likelihood Decomposition
L@O:D) = []Ps(&m]:0

m

— HHP ilm] | pa;[m] : 0)

m

= H HP i[(m] | pa;[m] : 0)5‘

m J
= [ Li(0x,pa, : D). What'’s the
: difference?
* Local likelihood function Global
Li(0x,pa, : D HP m] | pa;[m] : 9\f|p”) parameter

Independence!



Taking derivatives of MLE of BN
parameters — General case

0g P(D | 0g,6) =S 3 log P (Xi =2 | Pay, = x) [PaXZ.D
j=1i=1



Structure Learning

e (Constraint Based

— Check independences, learn PDAG
— HW1

« Score Based
— Give a score for all possible structures
— Maximize score



Score Based

« What's a good score function?

 How about our old friend, log likelihood?

maxL((G,0g): D) = maxmaxL({G,0g): D)
Q.Og o G - 99 o i

= max|[L((G, ég ) : D)

Y

« So here’s our score function:

scorer, (G : D) = 5(*::9-99:3’ : D)



Score Based

[Defn]: Decomposable scores
« Why do we care about decomposable scores?

* Log likelihood based score decomposes!

scorer, (G \[ZI (X;; Pa,) — \IZH

Need regularization



Score Based
e Chow-Liu

[. Compute I‘)“(‘-Y.Zf; X;) between each pair of variables, ¢ # j, where

Ip(X;Y) =) P(x,y)log
2 P(x)P(y)

2. Build a complete undirected graph in which the vertices are the variables in X.
Annotate the weight of an edge connecting X; to X; by I (Xi; Xj).

3. Build a maximum weiechted spannine tree.
S S

4. Transform the resulting undirected tree to a directed one by choosing a root
variable and setting the direction of all edges to be outward from 1it.



Score Based

« Chow-Liu modification for TAN (HW2)

Compute I (A;; Aj | C) between each pair of attributes, i # j.

Builld a complete undirected eraph in which the vertices are the attributes
| graj

Ay, ..., Ay Annotate the weight of an edge connecting A; to A; by Iy (A5 A |

).

Build a maximum weighted spanning tree.

Transform the resulting undirected tree to a directed one by choosing a root
variable and setting the direction of all edges to be outward from it.

Construct a TAN model by adding a vertex labeled by €' and adding an arc
from C' to each A;.



Slide and other credits

Zoubin Ghahramani, guest lectures in 10-702

Andrew Moore tutorial
— http://www.autonlab.org/tutorials/mle.html

http://cnx.org/content/m11446/latest/
Lecture slides by Carlos Guestrin




