BN Semantic II
d-Separation, PDAGs, etc

Amr Ahmed
Sep 25th, 2008

Outline

• Independence
• D-separation and Active Trails
• P-dag learning
Independence

D-Separation

- A graph algorithm for answering independence queries over G
- Sound and complete for almost all Ps that factor according to G
- P is faithful if it doesn’t declare extra independence assumption that can’t be read from G

P entails C \perp A,B !!
P is not faithful
D-Separation Cont

- Q: is \(X \perp Y \mid Z ? \)
- Answer by contradiction
 - Find a way that information flows between \(X \) and \(Y \) despite the existence of \(Z \)
 - Information can flow if there is a path \(x \ldots y \) that is not blocked by \(Z \) (active trail)
- Very simple "local" rules

\[
\begin{align*}
\text{A} & \rightarrow \text{B} \rightarrow \text{C} \\
\text{A} & \rightarrow \text{B} \rightarrow \text{C} \\
\text{A} & \rightarrow \text{B} \rightarrow \text{C}
\end{align*}
\]

Can move from A to C if B is not in Z

Can move from A to C if B is in Z or one of its decedents

Understanding the V-structure more

- \(C \) is a noisy X-or of \(A \) and \(B \)
- If \(C \) is not observed then \(A \) and \(B \) are uniform
- If you observe \(C \), then \(A \) and \(B \) are dependent
 - \(C=1 \rightarrow A=\neg B \) w.h.p
 - \(C=0 \rightarrow A=B \) w.h.p

Observing a decedent
- \(D \) is a noisy NOT of \(C \)
- If you observe \(D \), then w.h.p you know \(C \)
- If you have an idea about \(C \), \(A \) and \(B \) are dependent

Observing an ancestor!!
- Won’t help, \(E \) alone shouldn’t tell us much about \(C \)
- But in some situations it DOES, but later in the semester (context-specific independence)
D-separation Example

- Given I is $A \perp C$
- Given I is $A \perp F$
- Given I and B is $A \perp C$

Why D-separation is useful?

• Intuitively and on an abstract level, when you answer a probabilistic query $P(A|B)$, you would like to consider only those variables that would affect A given B

• Later, when we talk about inference, we will visit this again

• The concept of active trails is really very important in proving and justifying algorithms
 – You should use it in Q2 and Q4
Active Trails

- If it is all about independence, then to show that two graphs, G1 and G2 are equivalent, we need to show that \(I(G1) = I(G2) \), or practically:
 - A trail is active in G1 iff it is active in G2**
 - More algorithmically
 - Consider all ways in which some of the variables are observed
 - Show that all active trails in G1 and G2 are the same

** This is only true if G1 and G2 have no triangles, in case of triangles, we require that they agree on the set of minimal active trails (see problem 3.16). For this homework, we won’t worry too much about this subtlety.

Question 4 again

- Marginalization is a key operation, that we will use later in the semester.
Simple Marginalization

We can do it graphically

We can also do it algebraically

Factorize as in G

\[P(X,Y) = \sum_z P(X,Y,z) \]

Chain rule

\[P(X,Y) = \sum_z P(X)P(Y|X)P(z|X,Y) \]

\[= P(X)P(Y|X)\sum_z P(z|X,Y) \]

\[= P(X)P(Y|X) \]

Marginally dependent

\[P(X,Y) = \sum_z P(X,Y,z) \]

\[= \sum_z P(X)P(Y)P(z|X,Y) \]

\[= P(X)P(Y)\sum_z P(z|X,Y) \]

\[= P(X)P(Y) \]

Marginally independent

Q4 again

• Removing C, introduces new independence assumptions not in G like \(A \perp D \)

• We need to add more edges to compensate

• You need to consider what active trails are enabled by C
 – \(A \rightarrow C \rightarrow D \)
 – But also, \(A \rightarrow C \leftarrow B \) given D?

• Think what need to be done to make sure that the end variables are still dependent in G2 under the same conditions but when C is marginalized

• Sometimes fixing a trail will fix the other ones (we need to add the minimum number of edges)

• Hint: think first about trails that don’t require observing any other variables as fixing them might fix the others!
Q4

How to get these dependencies right after removing C?

(the above graph is not the solution!!
You should think about it)

Outline

• Independence
• D-separation and Active Trails
• P-dag learning
PDAG

• PDAG is a compact way of representing equivalent graphs
• Orient edges only if they must be this way
• Undirected edges can be either way
 – Remember key is active trails
 – For some active trails (other than v-structure --- immoralities--) edge direction is not important

Learning P-DAGs

• Learning the skeleton
• Discovering immoralities
• Orienting edges (this is straightforward)
Learning the skeleton

• There is an edge between X,Y if you cannot stop information flow between them
• You can stop information flow if you can block all paths between X,Y
• You can block a path, if you observe some variables (possibly empty set) = U
• The test:
 – Can you find U such that $X \perp\!\!\!\!\!\!\perp Y | U$?
 • If NO \Rightarrow then $x \rightarrow Y$
 • If Yes \Rightarrow then there is no edge

Step 1: Learning the skeleton

• Test: Can you find U such that $X \perp\!\!\!\!\!\!\perp Y | U$?
 • What is U? subset of all variables- $\{X,Y\}$
 • Can go up to size d (max fan in, or degree)? Why?
 • You don’t have to go over all possible U
 – A witness is all what you need to answer YES

What is a witness for E,D? What is a witness for A,D? What is a witness for B,C?
Step 2: Discover Immoralities

• For immoralities, we must direct edges in a certain way, so we should discover them

• A v-structure with no married parents

• Simple test:
 – Is X dependent on Y given Z?
 • If yes, ...
 • If no, ...

Step 2: Discover Immoralities

• This simple test will introduce false positives
• If it is a true immorality, we are OK
• But what about:

 - Given Z, X and Y are dependent
 – But not via Z, unfo. via another path
Step 2: Discover Immoralities

• Simple test: Is X dependent on Y given Z? that fails
• Should be: Is X dependent on Y given Z via a path that goes only through Z?
 — Practically we should block all other paths that lead from X to Y
 — In addition to observing Z, we might observe as many other variables as possible
• Test: Is X dependent on Y for all U, z in U?
 — Yes \rightarrow immorality
 — NO \rightarrow not immorality

• Answer is No, witness $U= \{Z,H\}$
• We are really asking the same questions
• Skeleton: Can you find U such that $X \perp \perp Y \mid U$?
 • Yes \rightarrow no edge,
 • No \rightarrow an edge
• Immorality: Can you find U such that $X \perp Y \mid U$?
 — Yes, and z in U \rightarrow not immorality
 — Yes, and z not in U \rightarrow immorality
 — The answer here can NOT be NO, why?
• This has been exploited via cashing in the book (but see the extra credit problem)
 — As instructed, you shouldn’t cache in your solution.
 — You should consider all U that contains Z until you find a witness (if there is one)
Some Hints to the programming problem

- A suggestion about representing PDAG
 - \(G(a,b) = 1, G(b,a) = 1 \) if \(a \rightarrow b \)
 - \(G(a,b) = 2 \) and \(G(b,a) = 0 \) if \(a \rightarrow b \)
 - \(G(a,b) = 0 \) and \(G(b,a) = 2 \) if \(a \leftrightarrow b \)
 - Makes life easier, ex. Check if \(a \rightarrow b \)
 - If \(G(a,b) == 2 \)
 - In old representation, if \(G(a,b) == 1 && G(b,a) == 0 \)

- Size of \(U \) in witness test
 - You need only up to \(d \)
 - But it won’t hurt to go up to \(2d \), why?
 - After all you are looking for a witness.