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Probability and Statistics Review

Thursday Sep 11

The Big Picture

Model Data

Probability

Estimation/learning

But how to specify a model?
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Graphical Models

• How to specify the model?

– What are the variables of interest?

– What are their ranges?

– How likely their combinations are?

• You need to specify a joint probability distribution

– But in a compact way

• Exploit local structure in the domain

• Today: we will cover some concepts that 

formalize the above statements

Probability Review

• Events and Event spaces

• Random variables

• Joint probability distributions

• Marginalization, conditioning, chain rule, 
Bayes Rule, law of total probability, etc.

• Structural properties

• Independence, conditional independence

• Examples

• Moments
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Sample space and Events

• Ω : Sample Space, result of an experiment

• If you toss a coin twice Ω = {ΗΗ,ΗΤ,ΤΗ,ΤΤ}

• Event: a subset of Ω

• First toss is head = {HH,HT}

• S: event space, a set of events:

• Closed under finite union and complements

• Entails other binary operation: union, diff, etc.

• Contains the empty event and Ω

Probability Measure

• Defined over (Ω,S) s.t.

• P(α) >= 0 for all α in S

• P(Ω) = 1

• If α, β are disjoint, then 

• P(α U β) = p(α) + p(β)

• We can deduce other axioms from the above ones

• Ex: P(α U β) for non-disjoint event
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Visualization

• We can go on and define conditional 

probability, using the above visualization

Conditional Probability

-P(F|H) = Fraction of worlds in which H is true that also 

have F true
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Rule of total probability
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From Events to Random Variable

• Almost all the semester we will be dealing with RV

• Concise way of specifying attributes of outcomes

• Modeling students (Grade and Intelligence):

• Ω =  all possible students

• What are events

• Grade_A = all students with grade A

• Grade_B = all students with grade A

• Intelligence_High = … with high intelligence

• Very cumbersome

• We need “functions” that maps from Ω to an 
attribute space.
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Random Variables
Ω

High

low

A

B A+

I:Intelligence

G:Grade

Random Variables
Ω

High

low

A

B A+

I:Intelligence

G:Grade

P(I = high) = P( {all students whose intelligence is high})
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Probability Review

• Events and Event spaces

• Random variables

• Joint probability distributions

• Marginalization, conditioning, chain rule, 
Bayes Rule, law of total probability, etc.

• Structural properties

• Independence, conditional independence

• Examples

• Moments

Joint Probability Distribution

• Random variables encodes attributes

• Not all possible combination of attributes are equally 

likely

• Joint probability distributions quantify this 

• P( X= x, Y= y) = P(x, y) 

• How probable is it to observe these two attributes 

together?

• Generalizes to N-RVs

• How can we manipulate Joint probability 

distributions?
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Chain Rule

• Always true

• P(x,y,z) = p(x) p(y|x) p(z|x, y)

= p(z) p(y|z) p(x|y, z)

=…

Conditional Probability
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But we will always write it this way:

events
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Marginalization

• We know p(X,Y), what is P(X=x)?

• We can use the low of total probability, why?
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Marginalization Cont.

• Another example
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Bayes Rule

• We know that P(smart) = .7

• If we also know that the students grade is 

A+, then how this affects our belief about 

his intelligence?

• Where this comes from?
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Bayes Rule cont.

• You can condition on more variables
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Probability Review

• Events and Event spaces

• Random variables

• Joint probability distributions

• Marginalization, conditioning, chain rule, 
Bayes Rule, law of total probability, etc.

• Structural properties

• Independence, conditional independence

• Examples

• Moments

Independence

• X is independent of Y means that knowing Y 

does not change our belief about X.

• P(X|Y=y) = P(X)  

• P(X=x, Y=y) = P(X=x) P(Y=y)

• Why this is true?

• The above should hold for all x, y

• It is symmetric and written as X ⊥ Y
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CI: Conditional Independence

• RV are rarely independent but we can still 

leverage local structural properties like CI.

• X ⊥ Y | Z if once Z is observed, knowing the 

value of Y does not change our belief about X

• The following should hold for all x,y,z

• P(X=x | Z=z, Y=y) = P(X=x | Z=z) 

• P(Y=y | Z=z, X=x) = P(Y=y | Z=z) 

• P(X=x, Y=y | Z=z) = P(X=x| Z=z) P(Y=y| Z=z) 

We call these factors : very useful concept !!

Properties of CI

• Symmetry:

– (X ⊥ Y | Z) ⇒ (Y ⊥ X | Z)

• Decomposition:

– (X ⊥ Y,W | Z) ⇒ (X ⊥ Y | Z)

• Weak union:

– (X ⊥ Y,W | Z) ⇒ (X ⊥ Y | Z,W)

• Contraction: 

– (X ⊥ W | Y,Z) & (X ⊥ Y | Z) ⇒ (X ⊥ Y,W | Z)

• Intersection:

– (X ⊥ Y | W,Z) & (X ⊥ W | Y,Z) ⇒ (X ⊥ Y,W | Z)

– Only for positive distributions!

– P(α)>0, ∀α, α≠∅

• You will have more fun in your HW1 !!
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Probability Review

• Events and Event spaces

• Random variables

• Joint probability distributions

• Marginalization, conditioning, chain rule, 
Bayes Rule, law of total probability, etc.

• Structural properties

• Independence, conditional independence

• Examples

• Moments

Monty Hall Problem

• You're given the choice of three doors: Behind one 

door is a car; behind the others, goats. 

• You pick a door, say No. 1

• The host, who knows what's behind the doors, opens 

another door, say No. 3, which has a goat.

• Do you want to pick door No. 2 instead?
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Host must

reveal Goat B

Host must

reveal Goat A

Host reveals

Goat A

or

Host reveals

Goat B

Monty Hall Problem: Bayes Rule

• : the car is behind door i, i = 1, 2, 3

•

• : the host opens door j after you pick door i

•
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Monty Hall Problem: Bayes Rule cont.

• WLOG, i=1, j=3

•

•
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Monty Hall Problem: Bayes Rule cont.
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Monty Hall Problem: Bayes Rule cont.

( )1 13

1 6 1

1 2 3
P C H = =�

�

� You should switch!
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Moments

• Mean (Expectation): 

– Discrete RVs: 

– Continuous RVs:

• Variance: 

– Discrete RVs:

– Continuous RVs:
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Properties of Moments

• Mean

–

–

– If X and Y are independent, 

• Variance

–

– If X and Y are independent,

( ) ( ) ( )X Y X YE E E+ = +

( ) ( )X XE a aE=

( ) ( ) ( )XY X YE E E= ⋅

( ) ( )2
X XV a b a V+ =

( )X Y (X) (Y)V V V+ = +

The Big Picture

Model Data

Probability

Estimation/learning
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Statistical Inference

• Given observations from a model

– What (conditional) independence assumptions 

hold?   

• Structure learning

– If you know the family of the model (ex, 

multinomial), What are the value of the 

parameters: MLE, Bayesian estimation.

• Parameter learning

MLE

• Maximum Likelihood estimation

– Example on board 

• Given N coin tosses, what is the coin bias (θ )?

• Sufficient Statistics: SS

– Useful concept that we will make use later

– In solving the above estimation problem, we only 
cared about Nh, Nt , these are called the SS of this 
model.

• All coin tosses that have the same SS will result in the 
same value of θ

• Why this is useful?
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Statistical Inference

• Given observation from a model

– What (conditional) independence assumptions 

holds?   

• Structure learning

– If you know the family of the model (ex, 

multinomial), What are the value of the 

parameters: MLE, Bayesian estimation.

• Parameter learning

We need some concepts from information theory

Information Theory

• P(X) encodes our uncertainty about X

• Some variables are more uncertain that others

• How can we quantify this intuition?

• Entropy: average number of bits required to encode X

P(X) P(Y)

X Y
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Information Theory cont.

• Entropy: average number of bits required to encode X

• We can define conditional entropy similarly

• We can also define chain rule for entropies (not surprising)
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Mutual Information: MI

• Remember independence?

• If X⊥Y then knowing Y won’t change our belief about X

• Mutual information can help quantify this! (not the only 

way though)

• MI: 

• Symmetric

• I(X;Y) = 0 iff, X and Y are independent! 
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Continuous Random Variables

• What if X is continuous?

• Probability density function (pdf) instead of 

probability mass function (pmf)

• A pdf is any function          that describes the 

probability density in terms of the input 

variable x.

( )f x

PDF
• Properties of pdf

–

–

–

• Actual probability can be obtained by taking 

the integral of pdf

– E.g. the probability of X being between 0 and 1 is 
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Cumulative Distribution Function

•

• Discrete RVs

–

• Continuous RVs

–

–
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