Probability and Statistics Review

Thursday Sep 11

The Big Picture

Probability

Estimation/learning

But how to specify a model?
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Graphical Models

* How to specify the model?
— What are the variables of interest?
— What are their ranges?
— How likely their combinations are?

* You need to specify a joint probability distribution
— But in a compact way
* Exploit local structure in the domain
* Today: we will cover some concepts that
formalize the above statements

Probability Review

* Events and Event spaces
* Random variables
* Joint probability distributions

* Marginalization, conditioning, chain rule,
Bayes Rule, law of total probability, etc.

* Structural properties

* Independence, conditional independence
* Examples
* Moments




Sample space and Events

* Q) : Sample Space, result of an experiment

* If you toss a coin twice Q = {HH,HT,TH,TT}
* Event: a subset of Q

* First toss is head = {HH,HT}
» S:event space, a set of events:

* Closed under finite union and complements

* Entails other binary operation: union, diff, etc.

* Contains the empty event and Q

Probability Measure

* Defined over (Q2,S) s.t.
* P(a)>=0forallain$S
- P(Q)=1
* If o, 3 are disjoint, then
* P(aUP)=pla) + p(P)
* We can deduce other axioms from the above ones

* Ex: P(ae U B) for non-disjoint event
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Visualization

Event space of
all possible — P(A) = Area of
worlds

reddish oval

Its area is 1/

Worlds in which A is False

* We can go on and define conditional
probability, using the above visualization

Conditional Probability

-P(F|H) = Fraction of worlds in which H is true that also
have F true

F

ﬁ, \my=PEDH)
| p(f1h) )
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Rule of total probability

From Events to Random Variable

* Almost all the semester we will be dealing with RV
* Concise way of specifying attributes of outcomes
* Modeling students (Grade and Intelligence):
Q= all possible students
* What are events
* Grade_A = all students with grade A
* Grade_B = all students with grade A
* Intelligence_High = ... with high intelligence
* Very cumbersome

* We need “functions” that maps from Q to an
attribute space.
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Random Variables

I:Intelligence

G:Grade

Random Variables

I:Intelligence

P(I = high) = P( {all students whose intelligence is high})
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Probability Review

Joint probability distributions

Marginalization, conditioning, chain rule,
Bayes Rule, law of total probability, etc.

Structural properties

Independence, conditional independence

Examples
Moments

Joint Probability Distribution

 Random variables encodes attributes

* Not all possible combination of attributes are equally
likely

Joint probability distributions quantify this

* P(X=x,Y=y)=P(x,y)

How probable is it to observe these two attributes
together?

Generalizes to N-RVs

How can we manipulate Joint probability
distributions?
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Chain Rule

* Always true
* P(x,y,z) = p(x) p(y[x) p(z]x, y)
=p(2z) plylz) p(x]y, 2)

Conditional Probability

P(X=x]Y=y)=

But we will always write it this way:

P(xl y)=P%Y) )

p(y)

events

9/11/2008



9/11/2008

Marginalization

* We know p(X,Y), what is P(X=x)?
* We can use the low of total probability, why?

plx)= ;P(x, y)
= ZylP(y)P(xl y)

Marginalization Cont.

* Another example

plx)= ;P(x, ¥.2)

= ;P(y,z)P(xl ¥,2)
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Bayes Rule

* We know that P(smart) =.7

* |f we also know that the students grade is
A+, then how this affects our belief about
his intelligence?

P(xl y)= P(x;)}()g | x)

* Where this comes from?

Bayes Rule cont.

* You can condition on more variables

P(xl y,z)= P(x I}z)zl;l(z)l X,2)
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Probability Review

 Structural properties

* Independence, conditional independence
* Examples
* Moments

Independence

» Xis independent of Y means that knowing Y
does not change our belief about X.

* P(X]Y=y) = P(X)
* P(X=x, Y=y) = P(X=x) P(Y=y)
* Why this is true?
* The above should hold for all x, y
* |tis symmetric and writtenas X LY
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Cl: Conditional Independence

* RV are rarely independent but we can still
leverage local structural properties like ClI.

e XLY| Zif once Zis observed, knowing the
value of Y does not change our belief about X

* The following should hold for all x,y,z

e P(X=x | Z=z, Y=y) = P(X=x | Z=2)

* P(Y=y | Z=z, X=x) = P(Y=y | Z=2)

* P(X=x, Y=y | Z=z) = P(X=x| Z=z) P(Y=y| Z=2)

We call these factors : very useful concept !!

Properties of Cl

* Symmetry:
- (XLY|2)=(YLX]2)
* Decomposition:
- XLYW |2)=>(XLY]|2)
* Weak union:
- XLYW |Z2)=(XLY|ZW)
* Contraction:
-~ XLW|Y,2)&(XLY|2Z)=(XLYW |2
* Intersection:
- XLY | W2 &XLW]|Y,Z)=(XLYW ]2
— Only for positive distributions!
— P(0)>0, Yo, ol
* You will have more fun in your HW1 !!
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Probability Review

* Examples
* Moments

Monty Hall Problem

* You're given the choice of three doors: Behind one
door is a car; behind the others, goats.

* You pick a door, say No. 1

* The host, who knows what's behind the doors, opens
another door, say No. 3, which has a goat.

* Do you want to pick door No. 2 instead?
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Monty Hall Problem: Bayes Rule

* C; : the caris behind doori,i=1,2, 3

* P(C;)=1/3

T~ R e

I L
~ c] o~

izk,j#k

1

« H;;: the host opens door j after you pick door i

« P(H;|C, )=
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Monty Hall Problem: Bayes Rule cont.

« WLOG, i=1, j=3

P(H13 |C1)P(C1)
P(H,3)

y P(C1|H13):

* (H13|C1) (C)=

i1
23 6

Monty Hall Problem: Bayes Rule cont.

* P(H\3)=P(H;3,C)+P(Hp;5,Co )+ P(H3,C)

—P(H13|C1) C1)+P(H13|C2) (C,)
1 1
_+1._
6 3
_1
2
1/6
* PlGHs)= 1?2 3

9/11/2008
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Monty Hall Problem: Bayes Rule cont.

16

P(Ci|His )= 12 3
1 2

P(G,|Hy;3) =1—§=§> P(C |H,5)

You should switch!

Moments

- Mean (Expectation): 4= E(X)
— Discrete RVs: E(X) =Z viP(X =)

— Continuous RVs: E(X) =.[+mxf(x)dx

* Variance: V(X)=E(X—,u)2
— Discrete RVs: V(X)zz (v, —u)’ P(X=v,)

Vi

— Continuous RVS: =_[_+:(x_ﬂ)2 f (x)dx

9/11/2008
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Properties of Moments

* Mean
— E(X+Y)=E(X)+E(Y)
- E(aX):aE(X)
—If X and Y are independent, E(XY) = E(X)-E(Y)
* Variance
= V(aX+b)=a’V(X)
—If Xand Y are independent, V(X+Y)=V(X)+V(Y)

The Big Picture

Probability

Estimation/learning

9/11/2008
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Statistical Inference

* Given observations from a model
— What (conditional) independence assumptions
hold?
* Structure learning
— If you know the family of the model (e,
multinomial), What are the value of the
parameters: MLE, Bayesian estimation.
* Parameter learning

MLE

e Maximum Likelihood estimation

— Example on board
* Given N coin tosses, what is the coin bias (0 )?

 Sufficient Statistics: SS
— Useful concept that we will make use later

— In solving the above estimation problem, we only
cared about N;, N, , these are called the SS of this
model.

¢ All coin tosses that have the same SS will result in the
same value of 6

* Why this is useful?
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Statistical Inference

* Given observation from a model

— What (conditional) independence assumptions
holds?

* Structure learning

We need some concepts from information theory

Information Theory

* P(X) encodes our uncertainty about X

e Some variables are more uncertain that others

P(X) P(Y)
X I I | | IR

* How can we quantify this intuition?
* Entropy: average number of bits required to encode X

—Ellog— 1t |=3 P(x)log -
H"(X)‘E{l gp(x)} 2 Plee s

9/11/2008
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Information Theory cont.

Entropy: average number of bits required to encode X

—Ellog— 1t |=3 P(x)log -
HP(X)‘E{I gp(x)} 2 Plee s

We can define conditional entropy similarly

H,(X1Y)= E[logp(xlly)} =H,(X.,Y)-H,(Y)

We can also define chain rule for entropies (not surprising)

H,(X,Y,Z)=H,(X)+H,(Y|1X)+H,(Z1X,Y)

Mutual Information: Ml

Remember independence?
¢ [f XLY then knowing Y won’t change our belief about X
* Mutual information can help quantify this! (not the only
way though)
Ml: I(X:Y)=H,(X)-H,(X1Y)
* Symmetric
* I(X;Y)=0iff, Xand Y are independent!

9/11/2008
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Continuous Random Variables

 What if X is continuous?

* Probability density function (pdf) instead of
probability mass function (pmf)

* A pdfis any function f (x)that describes the
probability density in terms of the input
variable x.

PDF

* Properties of pdf
- f (x) >0, Vx
= [Tr=
— f(x)<s1 M
* Actual probability can be obtained by taking
the integral of pdf

— E.g. the probability of X being between 0 and 1 is

Pmsxsmzﬂfuﬂx

9/11/2008
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Cumulative Distribution Function

* Fe(v)=P(X<v)
* Discrete RVs
- FX(V):ZviP(X:Vi)
* Continuous RVs
T R)=[ f(x)ax
d

~ LR
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