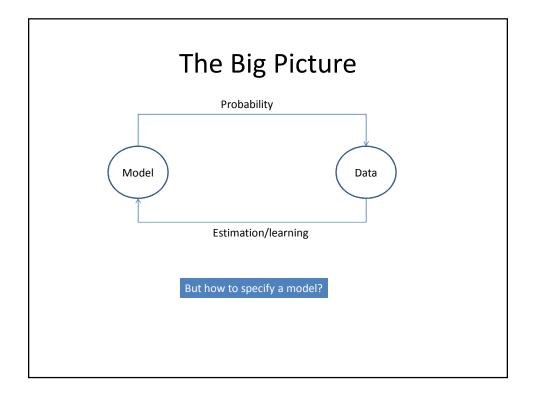
Probability and Statistics Review

Thursday Sep 11



Graphical Models

- How to specify the model?
 - What are the variables of interest?
 - What are their ranges?
 - How likely their combinations are?
- You need to specify a joint probability distribution
 - But in a compact way
 - Exploit local structure in the domain
- Today: we will cover some concepts that formalize the above statements

Probability Review

- Events and Event spaces
- Random variables
- · Joint probability distributions
 - Marginalization, conditioning, chain rule, Bayes Rule, law of total probability, etc.
- Structural properties
 - Independence, conditional independence
- Examples
- Moments

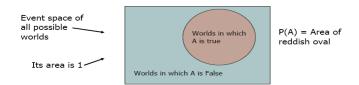
Sample space and Events

- Ω : Sample Space, result of an experiment
 - If you toss a coin twice $\Omega = \{HH, HT, TH, TT\}$
- Event: a subset of Ω
 - First toss is head = {HH,HT}
- S: event space, a set of events:
 - Closed under finite union and complements
 - Entails other binary operation: union, diff, etc.
 - Contains the empty event and Ω

Probability Measure

- Defined over (Ω,S) s.t.
 - $P(\alpha) >= 0$ for all α in S
 - $P(\Omega) = 1$
 - If α , β are disjoint, then
 - $P(\alpha \cup \beta) = p(\alpha) + p(\beta)$
- We can deduce other axioms from the above ones
 - Ex: $P(\alpha \cup \beta)$ for non-disjoint event

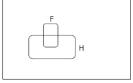
Visualization



 We can go on and define conditional probability, using the above visualization

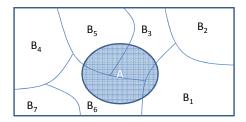
Conditional Probability

-P(F|H) = Fraction of worlds in which H is true that also have F true



$$p(f \mid h) = \frac{p(F \cap H)}{p(H)}$$

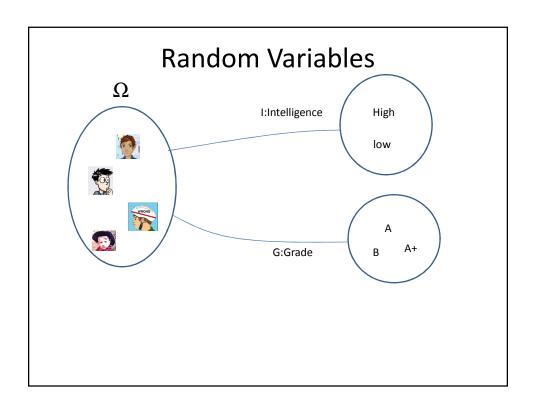
Rule of total probability

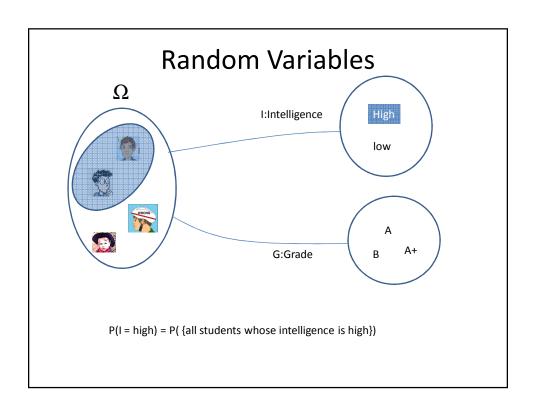


$$p(A) = \sum P(B_i) P(A \mid B_i)$$

From Events to Random Variable

- Almost all the semester we will be dealing with RV
- Concise way of specifying attributes of outcomes
- Modeling students (Grade and Intelligence):
 - Ω = all possible students
 - · What are events
 - Grade_A = all students with grade A
 - Grade B = all students with grade A
 - Intelligence_High = ... with high intelligence
 - Very cumbersome
 - We need "functions" that maps from $\boldsymbol{\Omega}$ to an attribute space.





Probability Review

- Events and Event spaces
- Random variables
- · Joint probability distributions
 - Marginalization, conditioning, chain rule, Bayes Rule, law of total probability, etc.
- Structural properties
 - Independence, conditional independence
- Examples
- Moments

Joint Probability Distribution

- Random variables encodes attributes
- Not all possible combination of attributes are equally likely
 - Joint probability distributions quantify this
- P(X = x, Y = y) = P(x, y)
 - How probable is it to observe these two attributes together?
 - Generalizes to N-RVs
 - How can we manipulate Joint probability distributions?

Chain Rule

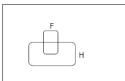
- · Always true
 - P(x,y,z) = p(x) p(y|x) p(z|x, y)= p(z) p(y|z) p(x|y, z)=...

Conditional Probability

$$P(X = x | Y = y) = \frac{P(X = x \cap Y = y)}{P(Y = y)}$$

But we will always write it this way:

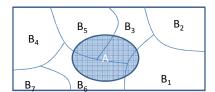
$$P(x \mid y) = \frac{p(x, y)}{p(y)}$$



Marginalization

- We know p(X,Y), what is P(X=x)?
- We can use the low of total probability, why?

$$p(x) = \sum_{y} P(x, y)$$
$$= \sum_{y} P(y)P(x \mid y)$$



Marginalization Cont.

Another example

$$p(x) = \sum_{y,z} P(x, y, z)$$
$$= \sum_{z,y} P(y,z)P(x \mid y, z)$$

Bayes Rule

- We know that P(smart) = .7
 - If we also know that the students grade is A+, then how this affects our belief about his intelligence?

$$P(x \mid y) = \frac{P(x)P(y \mid x)}{P(y)}$$

• Where this comes from?

Bayes Rule cont.

• You can condition on more variables

$$P(x \mid y, z) = \frac{P(x \mid z)P(y \mid x, z)}{P(y \mid z)}$$

Probability Review

- Events and Event spaces
- Random variables
- · Joint probability distributions
 - Marginalization, conditioning, chain rule, Bayes Rule, law of total probability, etc.
- Structural properties
 - Independence, conditional independence
- Examples
- Moments

Independence

- X is independent of Y means that knowing Y does not change our belief about X.
 - P(X | Y=y) = P(X)
 - P(X=x, Y=y) = P(X=x) P(Y=y)
 - Why this is true?
 - The above should hold for all x, y
 - It is symmetric and written as $X \perp Y$

CI: Conditional Independence

- RV are rarely independent but we can still leverage local structural properties like CI.
- X ⊥ Y | Z if once Z is observed, knowing the value of Y does not change our belief about X
 - The following should hold for all x,y,z
 - $P(X=x \mid Z=z, Y=y) = P(X=x \mid Z=z)$
 - $P(Y=y \mid Z=z, X=x) = P(Y=y \mid Z=z)$
 - P(X=x, Y=y | Z=z) = P(X=x | Z=z) P(Y=y | Z=z)

We call these factors: very useful concept!!

Properties of CI

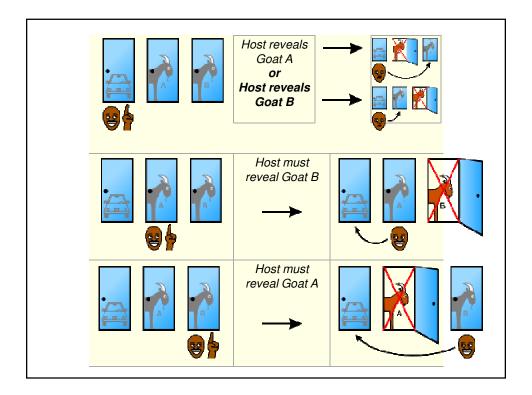
- Symmetry:
 - $(X \perp Y \mid Z) \Rightarrow (Y \perp X \mid Z)$
- Decomposition:
 - $\ \, (\textbf{X} \perp \textbf{Y,W} \ | \ \textbf{Z}) \Rightarrow (\textbf{X} \perp \textbf{Y} \ | \ \textbf{Z})$
- · Weak union:
 - $(X \perp Y,W \mid Z) \Rightarrow (X \perp Y \mid Z,W)$
- Contraction:
 - $(X \perp W \mid Y,Z) \& (X \perp Y \mid Z) \Rightarrow (X \perp Y,W \mid Z)$
- Intersection:
 - $(X \perp Y \mid W,Z) & (X \perp W \mid Y,Z) \Rightarrow (X \perp Y,W \mid Z)$
 - Only for positive distributions!
 - P(α)>0, \forall α, α≠∅
- You will have more fun in your HW1!!

Probability Review

- Events and Event spaces
- Random variables
- Joint probability distributions
 - Marginalization, conditioning, chain rule, Bayes Rule, law of total probability, etc.
- Structural properties
 - Independence, conditional independence
- Examples
- Moments

Monty Hall Problem

- You're given the choice of three doors: Behind one door is a car; behind the others, goats.
- You pick a door, say No. 1
- The host, who knows what's behind the doors, opens another door, say No. 3, which has a goat.
- Do you want to pick door No. 2 instead?



Monty Hall Problem: Bayes Rule

- C_i : the car is behind door i, i = 1, 2, 3
- $P(C_i) = 1/3$
- $\bullet H_{ij}$: the host opens door j after you pick door i

$$P(H_{ij} | C_k) = \begin{cases} 0 & i = j \\ 0 & j = k \\ 1/2 & i = k \\ 1 & i \neq k, j \neq k \end{cases}$$

Monty Hall Problem: Bayes Rule cont.

- WLOG, *i*=1, *j*=3
- $P(C_1|H_{13}) = \frac{P(H_{13}|C_1)P(C_1)}{P(H_{13})}$
- $P(H_{13}|C_1)P(C_1) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$

Monty Hall Problem: Bayes Rule cont.

- $P(H_{13}) = P(H_{13}, C_1) + P(H_{13}, C_2) + P(H_{13}, C_3)$ $= P(H_{13}|C_1)P(C_1) + P(H_{13}|C_2)P(C_2)$ $= \frac{1}{6} + 1 \cdot \frac{1}{3}$ $= \frac{1}{2}$
- $P(C_1|H_{13}) = \frac{1/6}{1/2} = \frac{1}{3}$

Monty Hall Problem: Bayes Rule cont.

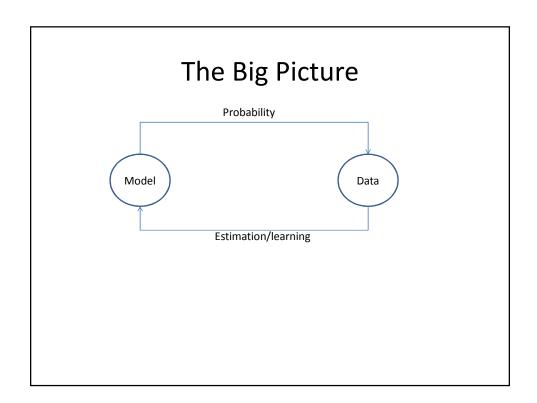
- $P(C_1|H_{13}) = \frac{1/6}{1/2} = \frac{1}{3}$
- $P(C_2|H_{13}) = 1 \frac{1}{3} = \frac{2}{3} > P(C_1|H_{13})$
- ☐ You should switch!

Moments

- Mean (Expectation): $\mu = E(X)$
 - Discrete RVs: $E(X) = \sum_{v_i} v_i P(X = v_i)$
 - Continuous RVs: $E(X) = \int_{-\infty}^{+\infty} xf(x) dx$
- Variance: $V(X) = E(X \mu)^2$
 - Discrete RVs: $V(X) = \sum_{v_i} (v_i \mu)^2 P(X = v_i)$
 - Continuous RVs: $V(X) = \int_{-\infty}^{+\infty} (x \mu)^2 f(x) dx$

Properties of Moments

- Mean
 - E(X+Y) = E(X) + E(Y)
 - E(aX) = aE(X)
 - If X and Y are independent, $E(XY) = E(X) \cdot E(Y)$
- Variance
 - $-V(aX+b) = a^2V(X)$
 - If X and Y are independent, V(X+Y)=V(X)+V(Y)



Statistical Inference

- Given observations from a model
 - What (conditional) independence assumptions hold?
 - Structure learning
 - If you know the family of the model (ex, multinomial), What are the value of the parameters: MLE, Bayesian estimation.
 - · Parameter learning

MLE

- Maximum Likelihood estimation
 - Example on board
 - Given N coin tosses, what is the coin bias (θ) ?
- Sufficient Statistics: SS
 - Useful concept that we will make use later
 - In solving the above estimation problem, we only cared about $\rm N_h, \, N_t\,$, these are called the SS of this model.
 - All coin tosses that have the same SS will result in the same value of $\boldsymbol{\theta}$
 - Why this is useful?

Statistical Inference

- Given observation from a model
 - What (conditional) independence assumptions holds?
 - Structure learning
 - If you know the family of the model (ex, multinomial), What are the value of the parameters: MLE, Bayesian estimation.
 - Parameter learning

We need some concepts from information theory

Information Theory

- P(X) encodes our uncertainty about X
 - Some variables are more uncertain that others

- · How can we quantify this intuition?
 - Entropy: average number of bits required to encode X

$$H_p(X) = E \left[\log \frac{1}{p(x)} \right] = \sum_{x} P(x) \log \frac{1}{P(x)}$$

Information Theory cont.

• Entropy: average number of bits required to encode X

$$H_P(X) = E\left[\log \frac{1}{p(x)}\right] = \sum_{x} P(x) \log \frac{1}{P(x)}$$

· We can define conditional entropy similarly

$$H_{p}(X|Y) = E \left[\log \frac{1}{p(x|y)}\right] = H_{p}(X,Y) - H_{p}(Y)$$

• We can also define chain rule for entropies (not surprising)

$$H_{p}(X,Y,Z) = H_{p}(X) + H_{p}(Y \mid X) + H_{p}(Z \mid X,Y)$$

Mutual Information: MI

- Remember independence?
 - If X⊥Y then knowing Y won't change our belief about X
 - Mutual information can help quantify this! (not the only way though)
- MI: $I_p(X;Y) = H_p(X) H_p(X|Y)$
 - Symmetric
 - I(X;Y) = 0 iff, X and Y are independent!

Continuous Random Variables

- What if X is continuous?
- Probability density function (pdf) instead of probability mass function (pmf)
- A pdf is any function f(x) that describes the probability density in terms of the input variable x.

PDF

- Properties of pdf
 - $f(x) \ge 0, \forall x$
 - $\int_{-\infty}^{+\infty} f(x) = 1$
 - $f(x) \le 1 ???$
- Actual probability can be obtained by taking the integral of pdf
 - E.g. the probability of X being between 0 and 1 is

$$P(0 \le X \le 1) = \int_0^1 f(x) dx$$

Cumulative Distribution Function

- $F_{X}(v) = P(X \le v)$
- Discrete RVs

-
$$F_{X}(v) = \sum_{v_{i}} P(X = v_{i})$$
• Continuous RVs

$$- F_{X}(v) = \int_{-\infty}^{v} f(x) dx$$
$$- \frac{d}{dx} F_{X}(x) = f(x)$$

Acknowledgment

- Andrew Moore Tutorial: http://www.autonlab.org/tutorials/prob.html
- Monty hall problem: http://en.wikipedia.org/wiki/Monty_Hall_problem
- http://www.cs.cmu.edu/~guestrin/Class/10701-F07/recitation_schedule.html