
10708 Graphical Models: Homework 4
Due November 12th, beginning of class

October 29, 2008

Instructions: There are six questions on this assignment. Each question has the name of
one of the TAs beside it, to whom you should direct any inquiries regarding the question.
Please submit your homework in two parts, one for each TA. Also, please put the TA’s name
on top of the homework.

The last problem involves coding. Do not attach your code to the writeup. Instead, copy
your implementation to

/afs/andrew.cmu.edu/course/10/708/your_andrew_id/HW4

Refer to the web page for policies regarding collaboration, due dates, and extensions.

Note: Please remember to put your name and Andrew ID on the first page of your
writeup.

1 Clique Tree Calibration Fixed-Point Dhruv [5 pts]

Prove that the clique beliefs π(Ci) = P (Ci) and edge beliefs µij(Sij) = P (Sij) form a fixed
point for the belief propagation algorithm for a clique tree, i.e., if we start BP with these
beliefs, no messages will change them.

2 Markov Network Representations Amr [5 pts]

Figure 1 is a Markov Random Field where the potentials are defined on all cliques of three
variables.

(a) Convert the triangle graph on (A,B, C) with potential Ψ(A,B, C) into a pairwise
Markov Random Field by introducing a new variable X. Show the graph, as well as
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Figure 1: A chordal (triangulated) Markov network

the node and edge potentials in table form (i.e., compute the values of the potentials
in the pairwise MRF)

(b) Convert the graph on (A,B, C, D) with potentials Ψ(A,B, C) and Ψ(B, C, D) into a
pairwise Markov Random Field. Is the graph chordal ? (Note: You do not have to
compute the pairwise MRF potentials in your solution).

3 Hammersley-Clifford and Non-Positive Distributions

Amr [10 pts]

Complete the analysis of Example 4.3.5 (Koller & Friedman), showing that the distribution P
defined in the example does not factorize over H. (Hint: Use a proof by contradiction).

4 The Uniqueness of Minimal I-maps for MN Amr [10

pts]

Unlike directed models, where the minimal I-map for a given distribution is not unique,
there exists a construction (Theorem 4.3.19 in Koller & Friedman) that results in the min-
imal I-map Markov Network (MN) for a positive distribution P . The construction is as
follows:

Theorem 4.3.19 Let P be a positive distribution. For each node X, let MB(X) be a
minimal set of nodes U satisfying Eq. 1. We define a graph H by introducing an edge
{X, Y } for all X and all Y ∈ MBP (X). Then the Markov network H is the unique minimal
I-map for P .

X ⊥ X − {X} − U |U (1)
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Below we will prove the uniqueness and minimality of this construction. Consider some
specific node X, and let U be the set of all subsets U satisfying Eq. 1. Define U∗ to be the
intersection of all U ∈ U

(a) Prove that U∗ ∈ U . Conclude that MBP (X) = U∗.

(b) Prove that if P |= (X ⊥ Y |X − {X,Y }), then Y /∈ MBP (X).

(c) Prove that if Y /∈ MBP (X), then P |= (X ⊥ Y |X − {X, Y }).
(d) Conclude that MBP (X) is precisely the set of neighbors of X in the graph H defined

above, showing that the construction above also produces a minimal I-map.

5 Variational Inference Amr [30 pts]

In this problem, you will investigate mean field approximate inference algorithms (Koller
& Friedman 10.5). Consider the Markov network in Figure 2(a). Define edge potentials
φij(xi, xj) for all edges (xi, xj) in the graph. We can write

P (x1, . . . , x12) =
1

Z

∏

(i,j)∈E

φij(xi, xj)

(a) Assume a fully factored mean field approximation Q (Figure 2(b)), parameterized by
node potentials Qi.

(i) Write down the update formula for Q1(x1).

(ii) Write down the update formula for Q6(x6).

In both cases, please expand out any expectations in the formulas (your answer should
be in terms of Qi and φij).

(b) Now we consider a structured mean field approximation Q (Figure 2(c)), parameterized
by edge potentials ψij(xi, xj) for each edge (xi, xj) in Figure 2(c).

Using Theorem 10.5.15 (Koller & Friedman), the update equation for potential ψj is,

ψj(cj) ∝ exp
[ ∑

φ∈Aj

EQ

[
ln φ|cj

]−
∑

ψk∈Bj

EQ

[
ln ψk|cj

]]
,

where Aj = {φ ∈ F : scope(φ) is not independent of Cj in Q} and Bj = {ψk : Ck and
Cj are not independent in Q}.
(i) Write down the update formula for ψ34(x3, x4)
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(a) Pairwise MRF (b) Fully Factored Mean Field

(c) Structured Mean Field

Figure 2: A pariwise Markov Random Field and the structure of two mean field approxima-
tions

(ii) Write down the update formula for ψ67(x6, x7)

In both cases, write the required formula up to a proportionality constant. You
can write it in terms of expected values, but do not include unnecessary terms.

(iii) Write out the formula for EQ[ln φ12(X1, X2)|x3, x4]. Make sure to show how you
would calculate the distribution that this expectation is over.

(iv) Repeat for EQ[ln φ15(X1, X5)|x3, x4].

(v) Repeat for EQ[ln φ37(X3, X7)|x3, x4].

(c) For an n× n grid with k-ary variables:

(i) What is the computational complexity of a single potential update (like Q6(x6) )
in the fully factored model?

(ii) What is the computational complexity of a single potential update (like ψ67(x6, x7))
in the structured mean field model?

(Note: Do not include the cost of computing the normalization constant in your
answer).
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(iii) Assuming No caching, what is the total cost in each case for a full iteration, i.e.,
that is computing the updates for all the potentials?

(d) We would like to use caching to speed up computations in the structured mean field
approach in Figure 2(c).

(i) What are the (conditional) marginal distributions under Q needed to calculate
the update for ψ34(x3, x4).

(ii) Repeat for ψ34(x
′
3, x

′
4).

(iii) Repeat for ψ12(x1, x2).

(iv) Using the above intuition, sketch a scheme to schedule the updates over all
ψXY (X, Y ) for all possible assignments to X and Y . You may use any exact
inference algorithm as a subroutine.

(v) For an n× n grid with k-ary variables, what is the computational complexity for
a single full iteration in your new scheme?

6 Semi-Supervised Image Segmentation with Loopy BP

Dhruv [40 pts]

Given an image of l × w pixels a K-ary segmentation is a clustering that assigns each pixel
to one of K-classes, typically under the assumption that neighbouring pixels are more likely
to belong to the same class.

In this question, you will implement an application of Loopy BP to the problem of interactive
(or semi-supervised) image segmentation, where the goal is to produce a binary segmentation
given user-provided scribbles or strokes on an image. Consider the image shown in figure 5(a).
The user (let’s call him Carlos) wants to cut himself out of this picture and paste it against
a different background (he prefers mountains to beaches). Unfortunately, Carlos is also lazy,
and is only willing to use a coarse paint-like interface and give us foreground/background
labels for a few pixels. In figure 3(b), the green scribble corresponds to foreground and the
blue scribble corresponds to background.

The most common graphical model approach for image segmentation represents the image
as a grid-graph pairwise Markov random field (Figure 4) where each node corresponds to a
pixel. Note that the value of a node is the cluster it belongs to.

Formally, the observed image is denoted Y = {Yi} and X = {Xi}, Xi ∈ {1 . . . K} is the
segmentation. The Markov random field has distribution

P (X, Y ) =
1

Z

∏
i

Φ(xi, yi)
∏

(i,j)∈E

Ψ(xi, xj) (2)
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(a) Input image (b) Scribbles

Figure 3: Interactive image segmentation

Figure 4: An example of a Markov Random Field for image segmentation

where Φ is the node potential1, the effect that pixel yi has on the label of xi; Ψ is the edge
potential, how the label of xi is influenced by the labels of its neighbours.

One common problem with this models is that even a (relatively) small image of size 300×300
pixels would contain 9 × 104 nodes in the MRF, and the size of the adjacency matrix for
this graph would be 81× 108 (although it would be sparse). A commonly used trick to get
around this problem is to “over-segment” the image into small segments (called superpixels),
and construct an MRF where the nodes correspond to superpixels instead of pixels. All the
pixels in this superpixel image which have the same colour belong to the same superpixel,
and will have the same foreground/background label because our MRF will assign labels on
superpixels. Figure 5(b) shows a visualization of these superpixels where all the superpixels
have been filled with random colours. Figure 5(c) shows what the MRF structure over
superpixels would look like, where the nodes correspond to superpixels, and neighbouring
(adjoining) superpixels have been connected by an edge. Note: The figure is a simplified
visualization, and your resultant graph will have a lot more nodes and edges.

1Also called the observation model or likelihood.
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(a) Input image (b) Superpixels (c) Neighbourhood graph

Figure 5: MRF on superpixels

6.1 Segmentation

This section describes what you need to implement. Please read the the readme file in the
provided code for more details about the code provided. For this section we will redefine
X = {Xi} as the set of (binary) random variables representing class labels for superpixels
and Y = {Yi} as the set of features extracted on superpixels (i ∈ {1, 2, . . . , S}, where S is
the number of superpixels in the image) . The MRF distribution will stay the same (but the
edge set E will change):

P (X, Y ) =
1

Z

∏
i

Φ(xi, yi)
∏

(i,j)∈E

Ψ(xi, xj) (3)

1. [Pixel GMMs] We have provided you with a scribble mask image (where a pixel
has value 1 when it lies on the foreground scribble, 2 when it lies on the background
scribble, and 0 otherwise). You will use the foreground and background pixels to learn
Gaussian Mixture Models for each class. Set the number of components in each GMM
to be 5. Your features for pixels will be Luv colour vectors. You may use external
implementations for GMMs. A matlab implementation is available here:

http://www.it.lut.fi/project/gmmbayes/

Consider looking at the function gmmb create.

Report the mean vectors (in the form of two 3 × 5 tables) for the foreground and
background GMMs in your writeup.

2. [Superpixel MRF structure] We have provided you with a superpixel map, where
each pixel holds the index of the superpixel it belongs to. Write a function called
convert sp labels to adj mat.m that takes in this matrix of superpixel labels and
returns the adjacency matrix for the superpixel neighbourhood graph. If the image
has been broken into S superpixels, this adjacency matrix will be of size S × S, and
will contain 1 whenever two superpixels are adjacent in the image (and 0 otherwise).

Hint: Consider scanning rows and columns of the superpixel map to find transitions.
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Display the adjacency matrix using the function imagesc and include a snapshot in
your writeup.

3. [Superpixel MRF parameters] Your features at superpixels (Yi) will be the average
colour (Luv vectors) of contained pixels. The node potential will be defined as the
likelihood of these feature vectors under foreground and background GMMs:

Φ(Xi = fg, yi) = P (yi|GMMfg)

Φ(Xi = bg, yi) = P (yi|GMMbg)

Consider looking at the function gmmb pdf.

The edge potential2 will be defined as

Ψ(xi, xj) = exp {−β × I (xi 6= xj)} ,

where I is an indicator function.

4. [Loopy BP] Write a function lbp.m that takes as input the graph structure (adjacency
matrix), the node potentials, and the edge potentials, and returns the MAP estimates
of the states of the nodes via (sum-product) Loopy Belief Propagation.

Initialize mij(xi) = 1 for all i 6= j. Stop running loopy belief propagation once the
maximum absolute difference between an old message and a new message is less than
10−5. Remember to compute the messages in log-space, for numerical stability. Also
remember to normalize messages as listed on the lecture slides. You do not need to
dampen messages to ensure convergence on this image.

5. [Plotting Segmentations] Vary β in the range [0, 10] (take steps of size 2) and
propagate superpixel labels back to pixel-level foreground/background segmentations
(where all pixels in the image have been assigned to either foreground (1) or background
(0)).

Include plots of these segmentations in your writeup. Comment on the behaviour as
β increases. Why is β = 0 special? What would happen as β →∞?

6.2 Extra Credit [8 pts]

Show us your creative side. What can you do with a cut-out of Carlos? Paste Carlos
against interesting backgrounds (smiling next to an alien ship or standing next to important
presidents), and submit the images.

2Also called the Potts Model.
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